DOI QR코드

DOI QR Code

콘택트렌즈의 물리화학적 특성에 따른 라이소자임과 알부민의 흡착 특성

Adsorption Properties of the Lysozyme and Albumin with Physicochemical Properties of the Contact Lens

  • Sung, Yu-Jin (Dept. of Optometry and Optic Science, Dongshin University) ;
  • Ryu, Geun-Chang (Dept. of Optometry and Optic Science, Dongshin University) ;
  • Jun, Jin (Dept. of Optometry and Optic Science, Dongshin University)
  • 투고 : 2013.05.20
  • 심사 : 2013.09.14
  • 발행 : 2013.09.30

초록

목적: FDA 기준에 의해 분류된 시판용 콘택트렌즈와 실험실에서 제조한 콘택트렌즈의 물리화학적 특성에 따라 라이소자임과 알부민의 흡착 특성을 살펴보고자 한다. 방법: 실험실에서 제조한 렌즈는 HEMA(2-hydroxyethyl methacrylate)와 TRIM(3-(trimethoxysilyl) propyl methacrylate) 등의 모노머를 사용하였으며 캐스트몰드 방법으로 제조하였다. 라이소자임과 알부민을 함유한 인공눈물을 제조하였다. 각각의 렌즈에 대해 흡착시간(48시간)과 인공눈물의 pH(pH 6, 6.8, 7.4, 8.2, 9)에 따라 단백질 흡착량 변화를 추적하고, 콘택트렌즈에 흡착된 각각의 단백질은 HPLC로 정량하였다. 결과: 두 단백질의 흡착에 대한 평형상태 도달하는 시간은 하이드로겔 렌즈에 비해 실리콘하이드로겔 렌즈에서 더 오래 걸렸다. 평형상태에서 두 단백질에 대한 흡착량은 실리콘하이드로겔 렌즈에 비해 하이드로겔 렌즈, 비이온성 렌즈에 비해 이온성 렌즈에서 높게 나타났다. 또한, 고함수 렌즈에서는 라이소자임이, 저함수 렌즈에서는 알부민의 흡착량이 많았으며, 이온성 고함수의 Group IV 하이드로겔 렌즈(H4)에서는 라이소자임만이 흡착되었다. 인공눈물의 pH에 따른 두 단백질의 흡착량은 각 단백질의 등전점에 가까워질수록 증가하였다. 결론: 라이소자임의 흡착량은 콘택트렌즈의 함수율보다는 렌즈 표면의 이온성에 더 큰 영향을 받으며, 알부민은 렌즈 표면의 이온성보다 함수율에 더 많은 영향을 받는다. 실리콘하이드로겔 렌즈에서 단백질의 흡착은 콘택트렌즈의 극성뿐만 아니라 실리콘 모노머에 포함된 Si 원자수와 그 화학적 구조에 의해 결정되는 세공의 크기 등이 함께 고려되어야 한다.

Purpose: Adsorption properties of lysozyme and albumin according to physiochemical properties of commercial contact lens classified with the FDA categories and a contact lens fabricated in the laboratory were investigated. Methods: The contact lens were prepared using HEMA(2-hydroxyethyl methacrylate) and TRIM(3-(trimethoxysilyl) propyl methacrylate) in a cast mold. Artificial tears containing lysozyme and albumin were prepared. We measured the amounts of protein adsorbed on the each lenses with varying adsorbed time (48 hour) and the pH range (6, 6.8, 7.4, 8.2, 9) of artificial tear. Amount of the proteins absorbed on the contact lenses were measured by using HPLC. Results: Time to reach the equilibrium of protein adsorption for silicone hydrogel lens was taken longer than hydrogel lens. The amount of adsorbed both lysozyme and albumin at equilibrium were greater for the hydrogel lens than the silicone hydrogel lens, and larger for the ionic lens than the non-ionic lens. Lysozyme was more adsorbed on the higher water content of contact lens, whereas albumin was more adsorbed on the lower water content of contact lens. Only lysozyme was adsorbed on the Group IV hydrogel lens of ionic higher water content. The adsorption of protein on contact lens increased with pH of artificial tears as close to the isoelectric point of each protein. Conclusions: The adsorption amount of lysozyme is more affected by the ionic strength of the contact lens surface than the water content of contact lens. Albumin adsorption is more affected by water content than the ionic strength of the contact lens surface. For the adsorption of proteins on the silicone hydrogel lens, the pore size, determined both by the number of Si atoms and the chemical structure of the silicone-containing monomers, as well as the polarity of contact lens should be also considered.

키워드

참고문헌

  1. Pedley DG, Skelly PJ, Tighe BJ. Hydrogels in biomedical applications. Br Polymer J. 1980;12(3):99-110.
  2. Jones L, Dumbleton K. Silicone hydrogel contact lenses: part 1 evolution and current status. Optometry Today. 2002; 42(1):26-31.
  3. Phillips AJ, Speedwell L. Contact lenses, 5th Ed. New York: Butterworth-Heinemann. 2006;63-77.
  4. Subbaraman LN, Glasier MA, Senchyna M, Sheardown H, Jones L. Kinetics of in vitro lysozyme deposition on silicone hydrogel, PMMA, and FDA groups I, II, and IV contact lens materials. Curr Eye Res. 2006;31(10):787- 796. https://doi.org/10.1080/02713680600888799
  5. Park MJ, Kwon MJ, Hyun SH, Kim DS. The adsorption pattern of protein to the soft contact lens and its effect on the visible light transmission and the contact angle. J Korean Oph Opt Soc. 2004;9(1):53-68.
  6. Choi JY, Park JS, Kim SR, Park MJ. The change in refractive powers of soft contact lenses causedby the deposition of tear proteins. J Korean Oph Opt Soc. 2011; 16(4):383-390.
  7. Park MJ, Cho GT, Shin SH, Lee HS, Kim DS. The diameter and base curve changes of soft contact lens by protein deposition. J Korean Oph Opt Soc. 2005;10(3):165-171.
  8. Subbaraman LN. Protein deposition and bacterial adhesion to conventional and silicone hydrogel contact lens materials. PhD Thesis. Waterloo University, Canada. 2009; 39-45.
  9. Green-Church KB, Nichols KK, Kleinholz NM, Zhang L, Nichols JJ. Investigation of the human tear film proteome using multiple proteomic approaches. Mol Vis. 2008; 14(1):456-470.
  10. Keith D, Hong B, Christensen M. A novel procedure for the extraction of protein deposits from soft hydrophilic contact lenses for analysis. Curr Eye Res. 1997;16(5): 503-510. https://doi.org/10.1076/ceyr.16.5.503.7049
  11. Garrett Q, Laycock B, Garrett RW. Hydrogel lens monomer constituents modulate protein sorption. Invest Ophthalmol Vis Sci. 2000;41(7):1687-1695.
  12. Senchyna M, Jones L, Louie D, May C, Forbes I, Glasier M. Quantitative and conformational characterization of lysozyme deposited on balafilcon and etafilcon contact lens materials. Curr Eye Res. 2004;28(1):25-36. https://doi.org/10.1076/ceyr.28.1.25.23496
  13. Richard NR, Anderson JA, Tasevska ZG, Binder PS. Evaluation of tear protein deposits on contact lenses from patients with and without giant papillary conjunctivitis. 1992;18(3):143-147.
  14. Li L, Wang JH, Xin Z. Synthesis and biocompatibility of a novel silicone hydrogel containing phosphorylcholine. European Polymer Journal. 2011;47(9):1795-1803. https://doi.org/10.1016/j.eurpolymj.2011.06.011
  15. Ju EH, Sung AY, Oh SJ, Lee KJ. The effect of protein deposit on the water content, oxygen transmissibility and contact angle of the soft contact lens. Korean J Vis Sci. 2010;12(4):291-302.
  16. Jones L, Mann A, Evans K, Franklin V, Tighe B. An in vivo comparison of the kinetics of protein and lipid deposition on group II and group IV frequent-replacement contact lenses. Optom Vis Sci. 2000;77(10):503-510. https://doi.org/10.1097/00006324-200010000-00004
  17. Luensmann D, Jones L. Protein deposition on contact lenses: the past, the present, and the future. Contact lens & Anterior eye. 2012;35(2):53-64. https://doi.org/10.1016/j.clae.2011.12.005
  18. Luensmann D, Jones L. Albumin adsorption to contact lens materials: a review. Contact lens & Anterior eye. 2008;31(4):179-187. https://doi.org/10.1016/j.clae.2008.05.004
  19. Lord MS, Stenzel MH, Simmons A, Milthorpe BK. The effect of charged groups on protein interaction with poly(HEMA) hydrogels. Biomaterials. 2006;27(4):567- 575. https://doi.org/10.1016/j.biomaterials.2005.06.010
  20. Karlgard CCS, Sarkar DK, Jones LW, Moresoli C, Leung KT. Drying methods for XPS analysis of purevision, focus Night&Day and conventional hydrogel contact lenses. App Sur Sci. 2004;230(1-4):106-114. https://doi.org/10.1016/j.apsusc.2004.02.020

피인용 문헌

  1. Development of Hyaluronic Acid-Functionalized Hydrogel Lens and Characterization of Physical Properties and Lysozyme Adsorption vol.20, pp.3, 2015, https://doi.org/10.14479/jkoos.2015.20.3.285
  2. The State of Eyewash Solution Use and Parameter Changes in Clear Soft Contact Lenses from Repeated Solution Use vol.23, pp.2, 2018, https://doi.org/10.14479/jkoos.2018.23.2.97
  3. Correlation between Tear Volume and Tear Film Stability and Protein Amount Deposited on Soft Contact Lenses in Dry Eyes vol.24, pp.1, 2019, https://doi.org/10.14479/jkoos.2019.24.1.11
  4. The Effect of pH on the Thickness of Soft Contact Lenses vol.25, pp.3, 2020, https://doi.org/10.14479/jkoos.2020.25.3.257