Assessment of Consolidation Properties Using Modified Oedometer for Radial Drainage Condition

개량형 수평배수 압밀시험 장치에 의한 압밀특성 평가

  • 전제성 (인덕대학 건설정보공학과)
  • Received : 2009.09.10
  • Accepted : 2009.11.05
  • Published : 2009.12.01

Abstract

Material functions about effective stress, permeability, coefficient of consolidation and coefficient of volume change has important role to predict consolidation velocity and settlement of soft ground. Modified oedometer for radial drainage is adapted to find out material functions on laboratory tests. Undisturbed sample for laboratory tests were taken from construction sites of industrial complexes on southern coastal area which consists of upper dredged fill and lower original clay layer. For different drainage condition in consolidation process void ratio, effective stress, permeability, coefficient of consolidation and coefficient of volume change has been assessed with results of existing standard oedometer tests. It is worthwhile to note that consolidation material functions could be expressed as regression equation by Stark (2005), heterogeneity for permeability could be assessed from these relationships.

연약지반의 적정 압밀속도 및 압밀침하량 예측에 있어 유효응력, 투수계수, 압밀계수, 체적변화계수 등의 물질함수는 가장 중요한 요소로 작용한다. 본 연구에서는 수평배수 조건에서의 압밀 물질함수 산정을 위한 개량형 수평배수 압밀시험 장치를 고안하고, 이를 이용하여 고함수비 해성점토에 대한 압밀시험을 실시하였다. 시험에 이용된 시료는 상부 준설매립 지반과 하부 원지반점토로 구성된 남해안 산업단지 조성 현장에서 채취하였다. 기존의 표준압밀시험을 동시에 실시하였으며, 이 결과를 이용하여 배수조건별 간극비, 유효응력, 투수계수, 압밀계수, 체적변화계수 등을 분석하였다. 압밀 물질함수는 Stark(2005)이 제안한 소성지수 포함의 회귀분석 방정식 형태로 표현되었으며, 이를 통해 투수성에 대한 이방성 특성을 산정할 수 있었다.

Keywords

References

  1. Arulrajah, A., Bo, M.W., Nikrazm, H. and Balasubramaniam, A.S. (2007), Dissipation Testing of Singapore Marine Clay by Piezocone, Geotechnical and Geological Engineering, Vol. 25, pp. 647-656. https://doi.org/10.1007/s10706-007-9137-4
  2. Barron, R.A. (1948), Consolidation of Fine-Grained Soils by Drain Wells, Transactions. ASCE, Vol. 113, pp. 718-742.
  3. Bergado, D.T., Ahmed, S., Sampaco, C.L. and Balasubramaniam, A.S. (1990), Settlement of Bangna-Bangpakong Highway on Soft Bangkok Clay, Journal of Geotech. Eng'g. Div., ASCE, Vol. 116, No. GT1, pp. 136-155. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:1(136)
  4. Carrier, W.D. and Beckman, J.F. (1984), Correlations between Index Test and the Properties of Remoulded Clays, Geotechnique, Vol. 34, No. 2, pp. 211-228. https://doi.org/10.1680/geot.1984.34.2.211
  5. Head, K.H. (1986), Manual of Soil Laboratory Testing, Pentech Press, London, Vol. 3, pp. 1129-1196.
  6. Robertson, P.K., Sully, J.P., Woeller, D.J., Lunne, T., Powell, J.J.M. and Gillespie, D.G. (1992), Estimating Coefficient of Consolidation from Piezocone Tests, Canadian Geotechnical Journal, Vol. 29, No. 4, pp. 539-550. https://doi.org/10.1139/t92-061
  7. Rowe, P.E. and Barden, L. (1966), A New Consolidation Cell, Geotechnique, Vol. 16, No. 2, pp. 162-170. https://doi.org/10.1680/geot.1966.16.2.162
  8. Seah, T.H., Tangthansup, B. and Wongsatian, P. (2004), Horizontal Coefficient of Consolidation of Soft Bangkok Clay, Geotechnical Testing Journal, Vol. 27, No. 5, pp. 430-440.
  9. Stark, T.D., Choi, H. and Schroeder, P.R. (2005), Settlement of Dredged and Contaminated Material Placement Areas. II : Primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill Input Parameters, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 131, No. 2, pp. 52-61. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:2(52)