• Title/Summary/Keyword: 고주파불안정

Search Result 69, Processing Time 0.021 seconds

Design Improvement of Baffle Injector Using Conjugate Heat Transfer Analysis (복합열전달 해석을 이용한 배플 분사기 설계 개선)

  • Kim, Seong-Ku;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.395-402
    • /
    • 2010
  • Baffle injectors are protruded into the combustion chamber and form an anti-pulsating baffle to prevent high-frequency combustion instabilities in transverse modes. Being exposed to a high heat-flux environment, the baffle injector has self-cooling passages through which kerosene is convected and heated. The baffle injector with 20 spiral cooling channels has been developed and successfully applied to 30 $ton_f$-class combustors without any performance loss due to an additional cooling. In this work, numerical analysis of conjugate heat transfer in baffle injectors with various cooling channel designs has been performed in order to reduce the fabrication cost which would be considerably increased for the 75 $ton_f$-class combustor. Prior to the application to a full-scale combustor, the thermal durability of the modified design has been verified through the subscale hot-firing tests.

A Study on Quantification of Damping Efficiency of Acoustic Cavities by Absorption Coefficient (흡음 계수를 이용한 연소불안정 제어용 음향공의 감쇠 정량화)

  • Cha, Jung-Phil;Song, Jae-Gang;Hong-Jip Kim;Ko, Young-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.438-445
    • /
    • 2007
  • A Helmholtz resonator as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified by linear acoustic analysis and atmospheric acoustic tests. To compare the results of acoustic attenuation effect in accordance with uni-resonator's geometry, quantitative analyses were made in the cases of various orifice diameters and lengths. Next, in the experiments to compare the results of acoustic attenuation effect by a difference in the number of resonators, damping capacity of harmful resonant frequency was improved by the increase of the number of resonators. On the other hand, attenuation efficiency of the frequency tended rather to lower due to over damping from the point of view of absorption coefficient. As the result, tuning the suitable geometry for the resonator to the resonant frequency is required for the control using the resonator. Also, the design of resonator's geometry and the choice of its number are important to put up the optimal efficiency in consideration of restriction of its volume.

Geometric Effects on Damping Characteristics of Acoustic Cavity for the Control of Combustion Instabilities (연소불안정 제어를 위한 음향공의 감쇠에 대한 형상 효과)

  • 차정필;고영성;고영성
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.59-66
    • /
    • 2006
  • Acoustic cavity as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified in atmospheric temperature. First, harmful resonant frequency in a modeling chamber can be damped effectively by the installation of properly-tuned acoustic cavity. Besides, geometric effects of acoustic cavity on damping characteristics are analyzed and compared quantitatively. Satisfactory agreements have been achieved with linear acoustic analysis and experimental approach. Results show that the acoustic cavity of the largest orifice area or the shortest orifice length was the most effective in acoustic damping of the harmful resonant frequency. Finally, it is proved that an optimal design process is indispensable for the effective control of combustion instabilities.

Linear Stability Analysis of a Baffled Rocket Combustor (배플이 장착된 로켓 연소기의 선형 안정성 해석)

  • Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.46-52
    • /
    • 2018
  • A simple Crocco's $n-{\tau}$ time delay model and linear analysis of fluid flow coupled with acoustics are combined to investigate the high frequency combustion instability in the combustion chamber of LOX/hydrocarbon engines. The partial differential equation of the velocity potential is separated into ordinary differential equations, and eigenvalues that correspond to tangential resonance modes in the cylindrical chamber are determined. A general solution is obtained by solving the differential equation in the axial direction, and boundary conditions at the injector face and nozzle entrance are applied in order to calculate the chamber admittance. Frequency analysis of the transfer function is used to evaluate the stability of system. Stability margin is determined from the system gain and phase angle for the desired frequency range of 1T mode. The chamber model with variable baffle length and configurations are also considered in order to enhance the 1T mode stability of the combustion chamber.

A Parametric Study on Combustion Stability Characteristics of Fuel-rich Gas Generators (설계 인자에 따른 연료 과농 가스발생기의 연소 안정성 특성 연구)

  • Ahn Kyu-Bok;Moon Il-Yoon;Seo Seong-Hyeon;Han Yeoung-Min;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.171-176
    • /
    • 2006
  • An experimental study on a fuel-rich gas generator was carried out. Thirty seven double-swirl injectors with recess number of 1.5 were distributed and installed in the injector head, which significantly influences the combustion performance. In the paper, the characteristics of combustion stability are inspected by the parametric varations such as changing length and diameter of a combustion chamber and installing a turbulence ring. The experimental results show that as a resonant frequency took place in a high region, the amplitude of the dynamic pressure generally diminished, however, the combustion instability could not be suppressed perfectly.

  • PDF

Combustion Stability Characteristics of Fuel-Rich Gas Generators (연료 과농 가스발생기의 연소 안정성 특성 연구)

  • Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.119-122
    • /
    • 2007
  • The present study employs experimental approach to identify combustion stability characteristics of fuel-rich gas generators. The gas generator of interest, fueled by LOx and Jet A-1, experienced combustion instability coupled to a longitudinal resonant mode of the combustion chamber at about 1200 Hz. The occurrence of instability is strongly associated with acoustic boundary condition at the exit .and axial location of maximum heat release. As a result, stretching heat release zone in the axial direction by increase of the fuel nozzle diameter has dramatically stabilized combustion.

  • PDF

Acoustic, Entropy and Vortex Waves in a Cylindrical Tube With Variable Section Area (단면적이 변하는 실린더 관에서의 음향, 엔트로피 및 와류 파동)

  • Cho Gyu-Sik;Lebedinsky Ev. V
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.55-66
    • /
    • 2004
  • In this paper a method for finding solutions of acoustic, vortex and entropy wave equations in a cylindrical tube with variable section area was suggested under the consideration of that the high frequency instability in a rocket engine combustion chamber is an acoustic phenomena, which Is coupled with combustion reaction. and that a combustion chamber and exhaust nozzle are usually shaped cylindrically As a consequence of that some method. which enable the mathematical analysis of the influence of entropy and vortex waves to acoustic wave. was suggested. According to the method reflection coefficients of acoustic wave on a supercritical nozzle was numerically calculated, through which it was presented that entropy or vortex waves can strengthen or weaken the reflection rate of acoustic wave.

Damping Characteristic of Resonator according to Geometry Variation (음향공 형상 변화에 따른 감쇠 특성 변화)

  • Kim, Jai-Ho;Park, Jin-Ho;Yu, I-Sang;Jang, Ji-Hun;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.35-38
    • /
    • 2011
  • Damping characteristic according to acoustic cavity's geometries was investigated to control the high frequency combustion instability occurring in the Liquid Rocket Combustion Chamber by experimental test and linear analysis. Its diameter was determined as a design parameter and its orifice length and diameter were appointed as fixed parameter in this study. Result shows that the damping capacity has been almost constant through all the experiments despite using the same orifice and helmholtz resonators which have different volume.

  • PDF

Design of High-Speed Multi-Layer PCB for Ultra High Definition Video Signals (UHD급 영상구현을 위한 다층인쇄회로기판의 특성 임피던스 분석에 관한 연구)

  • Jin, Jong-Ho;Son, Hui-Bae;Rhee, Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1639-1645
    • /
    • 2015
  • In UHD high-speed video transmission system, when a signal within certain frequency region coincides electrically and structurally, the system becomes unstable because the energy is concentrated, and signal flux is interfered and distorted. For the instability, power integrity analysis should be conducted. To remove the signal distortion for MLB, using a high-frequency design technique for EMI phenomenon, EMI which radiates electromagnetic energy fluxed into power layer was analyzed considering system stabilization. In this paper, we proposed an adaptive MLB design method which minimizes high-frequency noise in MLB structure, enhances signal integrity and power integrity, and suppresses EMI. The characteristic impedance for multi-layer circuit board proposed in this study were High-Speed Video Differential Signaling(HSVDS) line width w = 0.203, line gap d = 0.203, beta layer height h = 0.145, line thickness t = 0.0175, dielectric constant εr = 4.3, and characteristic impedance Zdiff = 100.186Ω. When high-speed video differential signal interface board was tested with optimized parameters, the magnitude of Eye diagram output was 672mV, jittering was 6.593ps, transmission frequency was 1.322GHz, signal to noise was 29.62dB showing transmission quality improvement of 10dB compared to previous system.

Effect of Combustion Chamber Design on Combustion Stability Characteristics of a Full-scale Gas Generator (연소실 설계에 따른 실물형 가스발생기의 연소 안정성 특성)

  • Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok;Ahn, Kyu-Bok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • Effects of combustion chamber design on combustion stability characteristics of a full-scale gas generator were studied experimentally. Thirty seven double-swirl injectors with recess number of 1.5 were distributed in the injector head, which significantly influences combustion performance. The characteristics of combustion stability were inspected by the parametric variations such as changing length and diameter of the combustion chamber and installing a turbulence ring. The experimental result shows that as the effective length of the combustion chamber decreased, an instability frequency took place in a high-frequency region, and the amplitude of the dynamic pressure generally diminished and could be reduced to the unharmful level. However, the dynamic pressure fluctuation in the region of longitudinal resonant frequency could not be suppressed perfectly.