• Title/Summary/Keyword: 고유 진동수

Search Result 1,729, Processing Time 0.03 seconds

Comparison of Measured Natural Frequencies of a Railway Bridge Specimen Between Different Excitation Methods (철도교량 시험체의 가진방법에 따른 고유진동수 측정치 변동에 대한 비교 분석)

  • Kim, Sung-Il;Lee, Jungwhee;Lee, Pil-Goo;Kim, Choong-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.535-542
    • /
    • 2010
  • Precise estimation of a structure's dynamic characteristics is indispensable for ensuring stable dynamic responses during lifetime especially for the structures which can experience resonance such as railway bridges. In this paper, the results of forced vibration tests of different excitation methods (vibration exciter and impact hammer) are compared to examine the differences and the cause of differences of extracted natural frequencies. Consequently a natural frequency modification method is suggested to eliminate effects of non-structural disturbance factors. Also, sequential forced vibration tests are performed before and after track construction according to the construction stage of a railway bridge, and the variation of natural frequencies are examined. Effect of added mass of vibration exciter and variation of support condition due to the level of excitation force are concluded as the major cause of natural frequency differences. Thus eliminating these effects can enhance the reliability of the extracted natural frequencies. Construction of track affects not only the mass of structure but also the stiffness of the structure. Also, the amount of increase in stiffness varies according to the level of structural deflection. Therefore, reasonable estimation of the level of structural response during operation is important for precise natural frequency calculation at design phase.

Free Vibrations of Tapered Beams with Static Deflection due to Dead Load (사하중에 의한 정적 처짐을 갖는 변단면 보의 자유진동)

  • Lee, Byoung-Koo;Oh, Sang-Jin;Lee, Yong;Lee, Tae-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.1
    • /
    • pp.87-93
    • /
    • 2001
  • 이 논문은 사하중에 의한 정적 처짐을 갖는 변단면 보의 자유진동에 관한 연구이다. 사하중이 작용하는 변단면 보의 자유진동을 지배하는 상미분방정식을 유도하고 이를 수치해석하여 최 저차 3개 모드의 고유진동수 및 진동형을 산출하였다. 수치해석 예제에서는 선형 변단면과 등분포 사하중을 채택하였다. 지점조건으로는 회전-회전, 회전-고정, 고정-고정 보를 채택하였다. 수치해석의 결과로 하중강도, 세장비 및 단면비가 고유진동수에 미치는 영향을 분석하였다. 사하중의 영향을 고려한 경우와 고려하지 않은 경우의 진동형을 서로 비교하였다.

  • PDF

A Study on the Optimization of the Natural Frequency of a Ring-Stiffened Cylindrical Shell (링 보강 원통셸의 고유진동수 최적화에 관한 연구)

  • Chang, Jin-Geon;Lee, Young-Shin;Yang, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.305-311
    • /
    • 2012
  • For the optimization of the fundamental natural frequency of stiffened cylindrical shells, simulations were performed for cylindrical shells that were stiffened with between one and five ring stiffeners. ANSYS 11.0 was used to simulate the optimization for the natural frequency. The Subproblem Approximation Method was applied as the optimization method. The design function of the optimization was the geometry of the T-shaped ring stiffener, and the constraint function was the maximum additional volume, constrained to a 10% increase. The objective function of the optimization was chosen to maximize the fundamental natural frequency. The performance index for optimal design was defined as the ratio of the natural frequency to the volume of the unstiffened and stiffened shells. The optimal performance index was obtained for the shell stiffened with three rings.

Development of Artificial Neural Network Model for Estimation of Cable Tension of Cable-Stayed Bridge (사장교 케이블의 장력 추정을 위한 인공신경망 모델 개발)

  • Kim, Ki-Jung;Park, Yoo-Sin;Park, Sung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.414-419
    • /
    • 2020
  • An artificial intelligence-based cable tension estimation model was developed to expand the utilization of data obtained from cable accelerometers of cable-stayed bridges. The model was based on an algorithm for selecting the natural frequency in the tension estimation process based on the vibration method and an applied artificial neural network (ANN). The training data of the ANN was composed after converting the cable acceleration data into the frequency, and machine learning was carried out using the characteristics with a pattern on the natural frequency. When developing the training data, the frequencies with various amplitudes can be used to represent the frequencies of multiple shapes to improve the selection performance for natural frequencies. The performance of the model was estimated by comparing it with the control criteria of the tension estimated by an expert. As a result of the verification using 139 frequencies obtained from the cable accelerometer as the input, the natural frequency was determined to be similar to the real criteria and the estimated tension of the cable by the natural frequency was 96.4% of the criteria.

Analysis of Dynamic Behavior of a Single Pile in Dry Sand by 1g Shaking Table Tests (1g 진동대 실험을 통한 건조사질토에 근입된 단독말뚝의 동적 거동 분석)

  • Lim, Hyun-Sung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.17-28
    • /
    • 2017
  • This paper presents the investigation of dynamic behavior of a single pile in dry sand based on 1g shaking table tests. The natural frequency of soil-pile system was measured, and then a range of loading frequency was determined based on the natural frequency. Additionally, the studies were performed by controlling loading accelerations, pile head mass and connectivity conditions between pile and cap. Based on the results obtained, relatively larger pile head displacement and bending moment occur when the loading frequency is larger than the natural frequency of soil-pile system. However, the slope of the p-y curve is smaller in the similar loading frequency. Also, it was found that inertia force like input acceleration and pile head mass, and relation of the natural frequency of soil-pile system and input frequency have a great influence on the slope of dynamic p-y curve, while pile head conditions don't.

The Sensitivity Analysis of Coupled Axial and Torsional Undamped Free Vibration of Ship Propulsion Shafting (선박 추진축계 종.비틂 연성 비감쇠 고유진동 감도해석)

  • Yeon-Ho Kim;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.48-55
    • /
    • 2001
  • In this paper, sensitivity analysis for the coupled axial and torsional undamped free vibration of ship propulsion shafting is proposed. The purpose of this study is to effectively and optimally design the resonance frequencies of propulsion shafting affecting barred speed range of main engine by modifying the diameters of intermediate and propeller shafts. The presented method is validated by the sensitivity analysis for the natural frequencies of propulsion shafting of two real large merchant ships. In addition, the changes of natural frequency and resonance main engine speed are discussed in case that the diameter is varied within the range regulated by the rule of shipping register.

  • PDF

Free Vibrations of Multispan Continuous Arches (다경간 연속 아치의 자유진동 해석)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.2
    • /
    • pp.53-63
    • /
    • 1995
  • 본 논문의 다경간 연속아치의 자유진동에 관한 연구이다. 다경간 연속아치의 고유진 동수 및 진ㄷㅇ형을 산출하기 위하여 내부지점의 지점조건에 다른 경계조건식을 유도하였다. 아치의 선형은 포물선을 택하였으며, 회전-로울러-회전, 고정-회전-고정의 지점 조건을 갖는 2경간 연속아치에 대한 수치해석 결과를 제시하였다. Runge-Kutta maethod을 이용 하였다. 실제 수치해석예에서는 회전관성이 고유진동수에 미치는 영향을 고찰 하였으며, 무차원 고유진동수와 아치높이 지간길이비 및 세장비 사이의 관계를 분석하였다. 또한 실험을 토아여 이론적인 해석결과를 검증하였다.

  • PDF

Vibration Characteristics of a Three-Story Reinforced Concrete Building Before and After Damage (3층 철근콘크리트조 건물의 손상전후의 진동특성)

  • Yoon, Sung-Won;Park, Yong;Ji, Jung-Hwan;Lim, Jae-Hwi;Jang, Dong-Wo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.3
    • /
    • pp.59-66
    • /
    • 2009
  • Dynamic characteristics such as frequency and damping ratio in the ambient state of building has been progressed in domestic and foreign. However, there has not been any deep research of dynamic characteristics of full-scale structure using vibration measurement of the building damaged up to failure. Dynamic characteristics of three-story reinforced concrete building was evaluated before and after it was damaged by using a actuator. Dynamic characteristics is reviewed and compared with previous study. Ambient vibration and human excitation test were applied. After 120mm horizontal displacement by actuator, frequency of long and short direction is reduced to 34.3%, 33.7% and damping ratio is reduced to 36.5%, 19.5% respectively.

  • PDF

The Dynamic Characteristics and Serviceability of Long Span Multi-purpose Hall (장스팬 다목적 홀의 동적특성과 사용성)

  • Lee, Sung-Min;Choi, Chui-Kyung;An, Young-Ki;Lee, Soo-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.105-113
    • /
    • 2003
  • Because structural systems are becoming lighter and more flexible and have lower natural frequencies and dampings than before, coordinated rhythmic activities such as dancing, audience participation in arenas or concert halls, and aerobics result in undesirable levels of vibration. For rhythmic activities, it is resonant or near resonant behavior that result in significant dynamic amplification and hence human discomfort. The most rational design strategy is to provide enough of a gap between the natural frequency of a floor system and the dominant frequencies excited by planned human activities to assure reasonably that resonance will not occur. For the case study the vibration measurements were performed at the floor of a long-span multi-purpose hall during the rock concert of popular singer.

Modal Parameter Extraction of Seohae Cable-stayed Bridge : II. Natural Frequency and Damping Ratio (서해대교 사장교의 동특성 추출 : II. 고유진동수와 감쇠비)

  • Kim, Byeong Hwa;Park, Jong-Chil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.641-647
    • /
    • 2008
  • This paper introduces a new technique that can extract natural frequencies and damping ratios from output-only vibration data. Firstly, the free vibration data is obtained from the cross correlations of the output-only response data using a singular value decomposition process. Secondly, the well-known system identification algorithm is applied to extract the natural frequencies and damping ratios from the extracted free vibration data. Comparing to ERADC technique, the accuracy of the proposed modal parameter identification algorithm has been numerically examined. Furthermore, the practicability of the proposed algorithm has been examined through the output-only acceleration data collected from the Seohae cable-stayed bridge. Using the proposed technique, total 24 modes have been identified for the deck plate motions of the bridge.