• 제목/요약/키워드: 고유행렬

검색결과 308건 처리시간 0.025초

행렬의 고유치의 수치해법

  • 이두성
    • 기계저널
    • /
    • 제26권5호
    • /
    • pp.389-393
    • /
    • 1986
  • 고유치는 여러 공학문제에서 중요하다. 예를들어 비행기의 안전성은 어떤 행렬(matrix)의 고유 치에 의해서 결정된다. 보의 고유진동수는 실제로 행렬의 고유치이다. 좌굴(buckling) 해석도 행렬의 고유치를 구하는 문제이다. 고유치는 여러 수학적인 문제의 해석에서도 자연히 발생한다. 상수계수 일계연립상미분방정식의 해는 그 계수행렬의 고유치로 구할 수 있다. 또한 행렬의 제곱의 수렬 $A,{\;}A^{2},{\;}A^{3},{\;}{\cdots}$의 거동은 A의 고유치로서 가장 쉽게 해석할 수 있다. 이러한 수렬은 연립일차방정식(비선형)의 반복해에서 발생한다. 따라서 이 강좌에서는 행렬의 고유치를 수치적으로 구하는 문제에 대하여 고찰 하고자 한다. 실 또는 보소수 .lambda.가 행렬 B의 고유치라 함은 영이 아닌 벡터 y가 존재하여 $By={\lambda}y$ 가 성립할 때이다. 여기서 벡터 y를 고유치 ${\lambda}$에 속하는 B의 고유벡터라 한다. 윗식은 또 $(B-{\lambda}I)y=0$의 형으로도 써 줄 수 있다. 행렬의 고유치를 수치적으로 구하는 방법에는 여러 가지 방법이 있으나 그 중에서 효과있는 Danilevskii 방법을 소개 하고자 한다. 이 Danilevskii 방법에 의하여 특 성다항식(Characteristic polynomial)을 얻을 수 있고 이 다항식의 근을 얻는 방법 중에 Bairstow 방법 (또는 Hitchcock 방법)이 있는데 이에 대하여 아울러 고찰하고자 한다.

  • PDF

Lyapunov 방정식의 해의 고유치 및 트레이스의 범위 (Eigenvalues and trace bounds on the solutions of lyapunov equations)

  • 권욱현;김상우;박부견
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.534-538
    • /
    • 1990
  • 본 논문에서는 연속 및 이산 Lyapunov 방정식의 해의 고유치 및 트레이스의 범위를 시스템 행렬의 고유치 및 고유벡터 행렬을 이용하여 표시한다. 이산 시스템의 경우 시스템 행렬의 최대 특이치가 1보다 큰 경우나 연속 시스템의 경우 시스템 행렬의 대칭행렬이 불안정한 경우에도 상한 값이 항상 계산 가능한 범위가 제시된다. 본 논문에서 제시된 범위들은 몇가지 조건을 갖고 다른 문헌에서 제시된 것들 보다 정확하며, 더욱이 특정한 시스템 행렬에 대해서는 범위의 상한과 하한이 일치한다.

  • PDF

AHP에서 왜대칭행렬의 고유분해를 이용한 중요도 추정법의 제안 (An Estimating Method for Priority Vector in AHP, Using the Eigen-Decomposition of a Skew-Symmetric Matrix)

  • 이광진
    • 응용통계연구
    • /
    • 제17권1호
    • /
    • pp.119-134
    • /
    • 2004
  • AHP기법에서는 의사결정 요소들의 중요도를 추정함에 있어 통상 쌍대비교행렬 그 자체에 고유벡터법 또는 대수최소제곱법을 적용한다. 본 연구에서는 왜대칭행렬의 고유분해를 통해 쌍대비교행렬을 조정한 후 조정된 쌍대비교행렬에 대해 고유벡터법 또는 대수최소제곱법을 적용하는 중요도 추정법을 제안한다. 그리고 이 추정법이 가지는 여러 가지 이점과 의미를 이론적 근거와 실제 사용 예를 통해 보이고자 한다. 본 연구결과는 불일치성이 높은 쌍대비교행렬이 주어진 경우 불일치성을 줄이는데 특히 유용하게 활용될 수 있을 것이다.

행렬부호함수의 특이성에 관한 연구 (On the Singularity of the Matrix Sign Function Algorithm)

  • 김형중;이장규
    • 산업기술연구
    • /
    • 제9권
    • /
    • pp.127-131
    • /
    • 1989
  • 순허수 고유치를 포함하고 있는 행렬이 행렬부호함수 알고리즘에서 보이는 성질을 규명했다. 역행렬이 존재하는 행렬도 이 알고리즘에서는 행렬의 조건과 무관하게 특이행렬이 될 수 있음을 보였다. 이 특성을 이용해서 이론적으로 모든 고유치를 알아낼 수 있다.

  • PDF

감쇠행렬을 고려한 고유치문제의 누락된 고유치 검사 기법 (Method for checking Missed eigenvalues of Eigenvalue Problem Considering Damping Matrix)

  • 정형조;김병완;이인원
    • 한국지진공학회논문집
    • /
    • 제4권2호
    • /
    • pp.47-56
    • /
    • 2000
  • 지반-구조물 상호작용 시스템 구조물의 진동제어 시스템 복합재료 구조물과 같은 비비례 감쇠 구조물의 경우 정확한 동적응답을 얻기 위해서는 감쇠행렬을 고려한 고유치 문제를 계산하는 것이 필수적이다 그러나 대부분의 고유치 해법에서는 구하고자 하는 고유치 중 일부를 누락시킬 수 있기 때문에 어떤 고유치 해법이 실제문제에 응용 가능한 방법이 되기 위해서는 누락된 고유치의 존재 여부를 검사하는 기법을 포함하고 있어야만 한다. 비감쇠나 비례감쇠 시스템의 경우에는 널리 알려진 Sturm 수열성질을 이용하여 누락된 고유치를 쉽게 검사할 수 있는 반면에 비비례 감쇠 시스템의 경우에는 널리 알려진 Sturm 수열 성질을 이용하여 누락된 고유치를 쉽게 검사할 수 있는 반면에 비비례 감쇠 시스템의 경우에는 아직까지 검사 기법이 개발되어 있지않다 본 논문에서는 편각의 원리를 이용하여 감쇠행렬을 고려한 고유치 문제의 누락된 고유치의 존재여부를 검사하는 기법을 제안하였다 제안방법의 효용성을 검증하기 위하여 두가지 수치예제를 고려하였다.

  • PDF

단항순열행렬에 의해 구성된 비실베스터 하다마드 행렬의 고유치 (Eigenvalues of Non-Sylvester Hadamard Matrices Constructed by Monomial Permutation Matrices)

  • 이승래;노종선;성굉모
    • 한국통신학회논문지
    • /
    • 제31권4C호
    • /
    • pp.434-440
    • /
    • 2006
  • 본 논문에서는 단항순열행렬에 의해 구성된 다양한 비실베스터 하다마드 행렬의 고유치가 유도 되었고 이는, 새로 구성한 행렬과 실베스트 하다마드 행렬의 고유치와의 연관성을 보여준다.

고유벡터 분석을 이용한 조명 불변 영상 검색 (Illumination Invariant Image Retrieval using Eigenvector Analysis)

  • 김용훈;이태홍
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.903-906
    • /
    • 2001
  • 본 논문에서는 조명의 변화에 의해 컬러 영상의 컬러 성분이 달라지더라도 영상 내 컬러간의 편차값을 나타내는 공분산 행렬(covariance matrix)의 고유벡터(eigenvector)와 영상 내 화소들의 컬러 성분과의 상관관계는 거의 변화하지 않는 특징을 이용한 조명 변화에 강인한 영상 검색 방법을 제안한다. 제안된 방법은 영상에서 컬러 성분들의 공분산 행렬과 공분산 행렬의 고유치(eigenvalue), 고유벡터를 계산한 후, 가장 큰 고유치에 관계된 고유벡터로 화소를 투영시키고, 투영된 벡터의 크기 성분으로 영상을 재구성한다. 재구성된 영상으로부터 7개의 불변 모멘트(moment)를 계산하고, 공분산의 가장 큰 고유치를 가중치로 부과하여 특징벡터를 추출한다. 7개의 불변 모멘트로부터 구한 특징벡터는 영상 내 물체의 이동, 영상의 회전, 크기 변화뿐만 아니라, 조명의 변화에 의해 컬러가 변화할 경우에도 유사한 영상을 잘 검색한다. 제안된 방법의 성능 확인을 위하여 5가지 조명에서 얻은 영상 데이터베이스를 이용하여 실험하였으며, 실험 결과 히스토그램 인터섹션에 비해 적은 특징량으로 검색이 가능하면서 조명 변화에도 대응할 수 있는 검색 결과를 얻을 수 있었다.

  • PDF

실대칭 행력의 고유쌍에 대한 수치해법 (Numerical Method for Eigen Pairs of a Real Valued Symmetric Matrix)

  • 최성;조영식;백청호
    • 한국정보처리학회논문지
    • /
    • 제5권1호
    • /
    • pp.97-102
    • /
    • 1998
  • 사회과학 분야에 응용되는 고유치 문제의 대상 행렬은 실대칭 행렬인 경우가 대부분이다. 또한, 이 분야에서의 고유치 문제는 데이터에 대한 잠재 구조를 파악하기 위해, 절대치의 크기 순으로 2∼4개의 고유쌍만을 필요로 하는 경우가 대부분이다. 컴퓨터에 의한 수치 계산으로 고유쌍을 구하는 방법들은 행렬에 대한 계산이기 때문에 마무리 오차의 문제가 필연적으로 대두된다. 본 논문은, 실대칭 행렬에 대해서 멱수법을 이용하여, 절대치가 큰 순서로 필요한 만큼의 고유쌍을 구하는 수치해법에 관하여 논술한 것으로서, 고유쌍 전체를 구하는 기존의 방법들에 비해서 계산 횟수를 줄일 수 있다는 이점이 있다.

  • PDF

Krylov-Schur 순환법에 의한 2차원 사각도파관에서의 고유치 문제에 관한 연구 (A Study On The Eigen-properties of A 2-D Square Waveguide by the Krylov-Schur Iteration Method)

  • 김영민;김동출;임종수
    • 전자공학회논문지
    • /
    • 제50권11호
    • /
    • pp.28-35
    • /
    • 2013
  • Krylov-Schur 반복법을 활용하여 2-차원 사각 도파관에서 나타나는 고유특성을 밝혔다. 고유 행렬 방정식은 삼각형 그물 요소의 접선을 기저벡터로 사용한 FEM(유한요소법)으로 구성하였다. 우선 Arnoldi 분해법을 이용하여 이 방정식에 대한 상위 Hessenberg 행렬을 구하였다. 그리고 QR 알골리즘을 통하여 이것을 삼각형 대각 행렬인 Shur 형태로 변형하였다. 수렴 조건에 부합된 몇몇 고유 값들이 삼각형 대각 행렬의 대각 요소에 나타났다. 이들에 대응하는 고유 모드들을 역-반복법으로 구하였다. 수렴조건에 부합되는 고유 값들은 Shur 행렬의 대각선 선두 부분으로 재배열시켰다. 이들은 나머지 고유값 및 고유모드의 쌍을 구하는 반복 과정에서 변형되지 않도록 배제되었다. 이 과정이 연속하여 서너 번 반복되었는데, 그 결과 충분한 신뢰도를 갖는 주요한 몇 개의 TM 및 TE 고유 쌍들이 구하여졌다.

가속화된 Lanczos 알고리즘을 이용한 구조물의 고유치 해법 (Eigensolution Method for Structures Using Accelerated Lanczos Algorithm)

  • Kim, Byoung-Wan;Oh, Ju-Won;Lee, In-Won
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.364-370
    • /
    • 2002
  • 본 논문에서는 양자물리학 분야에서 Lanczos 방법의 수렴을 가속화하기 위해 개발된 바 있는 행렬의 거듭제곱 기법을 동역학 분야의 Lanczos 순환식에 도입함으로써 구조물의 고유치 해석의 효율성을 향상시켰다 행렬의 거듭제곱 기법을 도입한 Lanczos 방법이 기존의 방법보다 수렴성이 더욱 우수하다. 수치예제를 통해 행렬의 거듭제곱 기법을 도입한 Lanczos 방법의 효율성을 검증하였으며 제안방법을 통한 고유치 해석에 있어서 가장 적합한 거듭제곱값을 제시하였다.

  • PDF