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1. INTRODUCTION

The continuous and the discrete Lyapunov equations play
a fundamental role in various areas of engineering theory,
particularly in control theory. In the last decade, considerable
research about the continuous Lyapunov equation such as

AP + PA = - Q (1.1
as well as the discrete one such as
APA - P = - Q 1.2)

has been carried out to find estimates for some scalar
quantities that express the ’extent’ or ’'size’ of the solution of
these equations. Here A, P, and Q are real n by n
matrices. P and Q are symmetric and Q is supposed positive
semidefinite. As such measures, the eigenvalues (especially the
smallest and largest one), the determinant, the trace and some
norm of the solution P were proposed. Since the computation
of these quantities causes some difficulty when the dimension
of the matrices involved increases, one wants to find bounds
for these quantities. Mori and Derese [1] gave a
comprehensive summary of the relevant bounds as well as
their possible applications. Since Mori and Derese, many
authors suggested the relevant bounds on the solution P in
both cases [2-7]. In the continuous case, Mori and Derese
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[1] reported the upper and lower bounds of the maximum
and minimum eigenvalues and only the lower bounds of the
remaining eigenvalues. Wang ef al [5] suggested the upper and
lower bounds of the trace. But the upper bounds of the
maximum cigenvalue in [1] and the trace in [5] can be
calculated only when (A+AT)Q7 or (A+A")/2 is stable. In
the discrete case, Mori and Derese [1] reported the upper
and lower bounds of all eigenvalues and the trace. Garloff
(4] also suggested the upper and lower bounds of the trace.
But all the upper bounds in [1} and [4] can be calculated
only when the maximum singular value of A, ¢ (A) is less
than 1. Mori er al [3,6] suggested eigenvaluc bounds for both
the continuous and the discrete cases which can be always
Troch {7] improved these bounds by using the
similar method. But the calculation of these bounds is very
complex including the calculations of differential equation,
integral equation, lincar equation, etc. This paper suggests the
eigenvalues and trace bounds on the solutions of both the
continuous and the discrete Lyapunov equation which can be
always calculated in terms of eigenvalues and eigen vectors of
A. Tt is shown that under some conditions these bounds can
express the bounds of the solution P well.

The organization of the paper is as follows. In Section
2, the bounds for the continuous matrix Lyapunov equation
are obtained. In Section 3, the bounds for the discrete one
are also obtained. Finally, Section 4 makes conclusions.

calculated.

2. CONTINUOUS CASE

It is well known that the solution of the continuous
matrix Lyapunov equation (1.1) is expressed [8] by

P = J:xp(ATt)Qexp(At)dt. (2.1)
0
A can be represented by
A = IN"!, (2.2)



where A = diag (A, A, » A), and A is the
m, x m, Jordan block matrix defined as
e 1 0 0
0 e, 1 . . . 0
A = (2.3)
0 0 o - . - @

and e¢; is an eigenvalue of A with the multiplicity m, and
m, + +mm=n.F=[ﬂ,F2, R O

is the corresponding eigen vector matrix of A. Then P of
(2.1) can be rewritten as

P = FTexP(/\Tt)FQFexp(At)F‘dt. (2.4)
0
We define G, and F_as follows.

G, := J:xp(/\Tt)exp(/\t)dt
0

= diag[J‘:xp(/\,Tt)exp(/\,t)dt,i=1, ~,m]
0

=: diaglg,, - - -, g,]

F, = Fxp(M)exp(Nt)dt
0

- diag[J:XP(/\t)exp(/\th)dt, i=1,--,m]
0
=: diaglf,,, - - -, f_]

Lemmal : g, = (g (1,k)) and f, = (f_(1,k))
have the following values, respectively, where 1=1, . .

m, and k=1, - . . m,.
g, (1, k)
] (1+k-27)!
=z if k 21
= |t (1= (k-7 {-20) " 2.5)
g, (k,1) if k <1
f.,(1,k)
[misi-k (2y+k-1-2)!
z if k =21
= | (DI kT 1) (-20 Y21 (2.6)
fo(k, 1) if k <1
Where ()! denotes the factorial of (-). When A has

distinct eigenvalues, G, = F, = -0, 5A"!,
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Proof :

We define A(s) as (sl ~A)"'. Then,
(s-a)! (s-q)7? (s-g )™
0 -a =1 — 1-mi

Als) = (s-a,) (s-¢q)
0 0 (s-¢a)!

Since exp(At) is the inverse Laplace transform of A(s),

exp(At)
1t ti/2! trt/(m-1)!
01 t tmi2/(m,-2) !

= exp(at).
00 o 1

=1 X;(t)exp(qt),

Seer and S are defined as X['(1) -X,(t) and X (t)-X(1),
respectively. Then,

1 tl‘k‘27’
_— (k21)

Seei (Luk)=| i (1=-7) 1 (k=71

S, (k,1) (k<1)

o miere terek-l-2
o (k=)

S (k=] vt (r-1)t(rrk-1-1)!

Sk, 1) (k<1)
Since g, = Jsm exp(2e;t)dt and f, = J S exp(2et)dt,

0 0

we can obtain g, of (2.5) andf, of (2.6) by using the
partial integration method. If A has discint eigenvalues, A is
diagonal.

Thus, G, = F, = J:xp(ZAt)dt = -0.5K".
0
This completes the proof.

Remarks

g, (1 2k)=f_ (m+1-%k,m +1-1). Thus it is sufficient
to calculate one of them.

2) If y=7,+1, B.iimieyz 1S the principal minor with order
¥, of Bi|mi=pi+ Thus, only the last row and last
column of g, are needed to be calculated when m,
increases by one.

Theorem 1 : For the solution of the continuous Lyapunov
cquation (1.1), the following inequalities hold.



A (TG, A (ITQT) < A (P)
< A (DTG A (I'QD) 2.7

max{A (F ) tr(I'Q) /A (I'T),
. tr (T7G, M)A (T7QD) }

s tr(P) =

min{A(F)tr(I'QD /A (I'T),
tr (MG M) A (TTQD) } (2.8)

Where A, A, and A denote the maximum, minimum, and
i-th ecigenvalue, respectively, and tr(-) the trace of ().

Proof : From (2.4) and the definition of G,, we can obtain
the following inequality.

A(rQDrTG M = P s A (TQDIG T

By calculating the eigenvalue and trace of both sides of the
above inequality, we can easily obtain the inequality (2.7) and
the following inequality.
ATQD) tr (TTG I < tr(P) =
QD) to (TG I 2.9

By taking the trace of both sides of (2.4), we can obtain
the following equation.

tr(P) = tr[FTexp(/\Tt)FQFexp(At)I“dt]
0
= tr{(I'D Fxp(ATt)l"TQl"exp(At)dt]
0
From this equation, we can also obtain the following
inequality.

tr[Fxp(ATt )ITQTexp(At)dt1/A(TT) = tr(P)
0

< tr[Fxp(ATt yTQlexp (At )dt 1/A (T
0

This inequality and the definition of F, yield the following
inequality.

A (F,)tr (ITQL) /A (I'T) = tr(P) s

A(F ) tr (ITQD) /& (I'T) 210)

From the inequality (2.9) and (2.10), the inequality (2.6) can
be obtained. This completes the Proof.
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Remarks
1) When A is symmetric, A is diagonal and [" is a unitary
matrix. Therefore, if Q = 1, we can obtain the

n

following equations.

P = -0.5A7", A(P) = A(-0.5A),

and tr(P) = tr(-0.5A")

2) The bounds of (2.7) and (2.8) can be calculated even
though (A+A7)/2 is not stable.

3) The smaller the condition number of the eigen vector
matrix of A is, the tighter the bounds of (2.7) and
(2.8).

The following example compares bounds of this paper with
those of Troch [7] and Wang er al [5].

-1 1 0
e
0

where A = diag (-1, -1, -1) and T' = 1. Assume that
Q = diag(l, @) and « = 1, 2, and 3. From (2.7), the
lower bound of each eigenvalue is {.345, .5, .904} for all
a and the upper bound {345, .5, .904}, {.691, 1, 1.809},
and {1.382, 2, 3.618} for «¢ = 1, 2, and 4, respectively.
‘The Troch’s lower bound for each eigenvalue is {.059, .086,
.155), {059, .155, .172}, and {.059, .155, .343} and the
upper bound {2.014, 2.914, 5.272}, {2.014, 5.272, 5.828}, and
{2.013, 5272, 11.677} for @ = 1, 2, and 4, respectively.
Eigenvalues of P for each ¢ are {.345, .5, .904}, and {.345,
904, 1}, and {345, .904, 2}, respectively. From (2.8), the
lower and the upper bounds for the trace of P for each a
are {1.75, 1.75}, {1.75, 3.5}, and {2.073, 5.427}, Troch’s trace
bounds {.300, 10.20}, {.386, 13.11}, and {.558. 18.95}, Wang’s
ones {1, 3}, {1.667, 5}, and {2, 6}, and trace of P is 1.75,
2.25, and 3.25, respectively.

Example 1 [7] : A =

From these results, it is noted that if the ecigen vector
matrix of A is well-cenditionedand ¢ (Q) is near to ¢ ,(Q),
the method of this paper considerably reduces the conservatism
on the estimate of the bounds on the eigenvalues and trace
of P. Especially, when the eigen vector matrix is orthonormal
and Q identity, the method of this paper offers exact
bounds.

3. DISCRETE CASE

The solution of the discrete matrix Lyapunov equation
(1.2) is described [8] by

P = (AT)'QA', (3.1)

[=0

By replacing A in (3.1) with TN!,
rewritten as

P of (3.1) can be



P = ZIT(A)'TIQINT!, (3.2)
i=0
G, and F, are defined as follows.
Gy = HA)YN=diag[ZADAY,  i=1, -, m]
k=0 k=0
F, 1= ZAN)=diag[Z AYAD*, i=1,--,m]
k=0 k=0
We define S, and S, as (AT)*A* and A*(AT)¥,

respectively. Then,

G, = diag[Z8§,,,, i=1, -, m]
k=0
=: diaglgy, * * *» 8,,) and (3.3)
F, = diag[&§,,,, i=1, -, m]
k=0
=: diagl[f,, - - -, (3.4)

fonl-

When A has distinct eigenvalues, G, = F, = (I - A)"!,
It is known that [9]

Axk = aik'
— . k!ai"l k!a‘l-ml -
1 ke~ .
bo2i(k-2) (m,=1)! (k-m,+1)!
k!alz-mi
0 1 ke
(m,=2) ! (k-m,+2)!
0 0 0 ke,
Lo o 0 1 J

Using this equation, the following lemma is obtained.

Lemma 2 : S, =(S_, (1,j)) and S, =(S,,,(1,i))
have the following values, respectively, where I=1, - - -,
m, and j=1, - - - m,.
S,ar (1, 1)

1 k!k!e? g

if j 21
= e (=D DUK-1+ AR+
(3.5)
S,a(i 1) i j <1

537

Srai(1,3)

e ktk!lg i i-2r2.q 2k
= ' ‘
ret (P DUI=j+ -1k =+ DUK-1+j- 7= 1)!

if 1z
(3.6)
S, (i, 1) i j <1

It should be noted that remarks after Lemma 1 also hold
for g, and fg. By using (3.3), (3.4), (3.5), and (3.6), we
can obtain g, and f,, when m, 2 and 3 as follows.

8.2
L e
@0, 2_‘7‘:2”';‘

2_ai2+ai4 a;‘)\i
| A VZXS
8t

a8,

Bailmi=2z =

f

dilmi=z

.6,
b\‘ 5

Baijmi=3’

2028
6‘.5

Baifmi=2"

20 (3-¢+a?) ,

208 06,(3-o%+a*) 3-2%+6¢'-3¢%+c?

f 8,5

dlmi=3 74

3-a’t6q'-30 +e® 8 (3-¢’+e*) 2ai’é‘i2—I

J ,

a8, (3-¢’+at)
55

arimi=2 %

f
L 20%?

where 8, = 1/(1-¢?).

Using the similar method to Theorem 1, we can obtain the
following theorem for the discrete Lyapunov equation.

Theorem 2 For the solution of the discrete Lyapunov
equation (1.2), the following inequalities hold.

AT (I'QD) = A(P) =

A (TG, A (I'QD) (3.7)

max{A (F)tr(ITQD) /A(T'T),
tr (UG YA (IMQD) }

=

£ tr(P)

min{A (F,)tr(ITQM) /A (I'T),
tr (0TGN A (TTQD) - (3.8)

It should be also noted that remarks after Theorem 1

hold here. When A is symmetric and Q = [, we o
obtain the following equations.

P = (I, - AH)', A(P) = A(I, - AH)™,

and tr(P) = tr[(I, - A")7'].



Via an example, the bounds of (3.7) and (3.8) arc

compared with those of Troch [7] and of Garloff [4].

0.5 1 0
Example 2 A = [ 0 0.5 0 :|
0 0 0.25
where A = diag(0.5,0.5,0.25) and [" = I,.
1 1 0
Assume that Q :[ 1 2 0 —! and ¢ = 1, 2, and 4.
0 0 o A

Then we can obtain the following bounds on the eigenvalucs
and trace of P.

< Eigenvalue Bounds on P >

: -
[:% 1 2 4 }
4.0743E-114.0743E-14.0743E-1
LB|4.1524E-1|4.1524E-1{4.1524E-1
1.7351 1.7351 1.7351
(3.7) —
2.7926 2.7926 4.2667
UB|2.8461 2.8461 4.3485
11.892 11.892 18.170
5.4953E~115.4953E-1|5.4953E~1
‘ LB,1.0664 2.1328 4.2656
; 6.8880 6.8880 6.8880
"Troch
3.0851 3.0851 3.0851
|UB|5.9868 11.974 23.947
‘ 38.669 38.669 38.669
j 6.0714E-116.0714E-16.0714E-1
| A (P) [1.0667 |2.1333 3 2067 ;
| 8.1336 [8.1336 8.1336 |
(LB : Lower bound, UB : Upper b()und)
< Trace bound on P >
a ‘ 1 2 4
LB| 4.2667| 5.3333 7.4667
(3.8)
UB|17.5510(17.56310{26.7850
LB| 8.5039| 9.5703|11.7036
Troch
UB[47.7410|53.7280(65.7010
Wang |LB| 4.0074| 5.0092| 7.0129
and
et al |[UB| can not be calculated
Tr.(P) | 1.75 ’ 2.25 I 3.25

From the these results, it is noted that the same arguments
after Example 1 hold here too.

4. CONCLUSIONS

Some bounds on the eigenvalues and trace of the solutions
of both the continuous and the discrete Lyapunov equations
were obtained in terms of the cigenvalues and cigen vectors
of the system matrix A. These bounds arc alwuys calculated
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regardless of the stability of (A+AT)/2 in the continuous case
and the maximum singular value of A in the discrete casc.
It was noted that the bounds of this paper reduced the
conservatism in the estimated bounds on the solution of the
both Lyapunov equations when the system matrix A is well-
conditioned and Q is the identity matrix. Especially, when A
is symmetric and Q is the identity matrix, the bounds of
this paper offer the exact estimates on the eigenvalues and
trace of the solutions of both Lyapunov equations.

Troch [7] also suggests the bounds of all eigenvalues
which can be heavy
computational burden. However, only the eigenvalues and cigen
vectors of A are neccessary to calculatc the bounds of this

paper.

always calculated, which requires a
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