• Title/Summary/Keyword: 고유진동형

Search Result 307, Processing Time 0.033 seconds

Free Vibrations of Circular Curved Beams with Constant Volume (일정체적 원호형 곡선보의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Choi, Jong-Min;Park, Chang-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.570-579
    • /
    • 2011
  • This paper deals with free vibrations of the circular curved beams with constant volume, whose cross sectional shapes are the circular solid cross-sections. Volumes of the objective beam are always held in constant regardless shape functions of the cross-sectional radius. The shape functions are chosen as the linear, parabolic and sinusoidal ones. Ordinary differential equations governing free vibrations of such beam are derived and solved numerically for determining the natural frequencies. In numerical examples, the hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, relationships between frequency parameters and various beam parameters such as rise ratio, section ratio, elasticity ratio, volume ratio, slenderness ratio and taper type are reported in tables and figures.

In-plane Free Vibration Analysis of Parabolic Arches with Hollow Section (중공단면을 갖는 포물선형 아치의 면내 자유진동 해석)

  • Lee, Tae-Eun;Lee, Byoung-Koo;Lee, Jae-Young;Yoon, Hee-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.215-223
    • /
    • 2008
  • The differential equations governing free vibrations of the elastic arches with hollow section are derived in polar coordinates, in which the effect of rotatory inertia is included. Natural frequencies is computed numerically for parabolic arches with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and reference are made to validate theories and numerical methods developed herein. The lowest four natural frequency parameters are reported, with the rotatory inertia, as functions of three non-dimensional system parameters: the breadth ratio, the thickness ratio and the rise to span length ratio.

Development of Slender Aerodynamic Girder for Suspension Bridges (현수교 세장 내풍 단면의 개발)

  • Kwon, Soon-Duck;Lee, Myeong-Jae;Cho, Eukyung;Lee, Seung-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.241-256
    • /
    • 2010
  • This study intends to develop an aerodynamic girder for suspension bridge with width corresponding to 1/70 of the main span length. In the first step of present study, parametric study for the effects of major structural properties on aerodynamic stability of bridges was performed. The span length and natural frequency of bridges were found to be free from girder width, girder height, and aspect ratio of width to height. The empirical equation according to confidence interval was proposed to estimate the natural frequencies of bridges from span length. From the sensitivity analysis, it was revealed that the torsional frequency was dominant parameter among various structural properties that affected flutter velocity mostly. The final aerodynamic bridge section which satisfied the flutter criteria was found from section wind tunnel tests for 30 cross sectional models. The aerodynamic stability of the developed cross section was verified by multimode flutter analysis. The present economical cross section can be used for long span suspension bridge.

Vibration Mode Analysis of Power Train on a Rear Wheel Drive Car (후륜구동차량의 동력전달장치의 고유진동형 분석)

  • Stuehler, Waldemar;You, Chung-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1894-1899
    • /
    • 2000
  • The Roadway caused through Power Train engine vibration and bad ride comfort. It is very important to analyze the vibratory characteristics. The mathematical models on the Power Train, which is composed of engine-/transmission block, universal joint shaft, differential, rear axle arm and wheels, are developed and is verified by the experiments. This Paper describes the coupling influence occurred through a complete drive system for the power train. Dies study is carried out computationally with a calculation program and experimentally with the aid of the mode analysis.

  • PDF

Free Vibration of Tapered Tube (선형변단면관(線形變斷面管)의 자유진동)

  • Lee, Yong Woo;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.45-54
    • /
    • 1991
  • The closed forms of mass matrix with rotational inertia matrix are developed for free vibration analysis in space structures containing linearing tapered members with cross section of thin-walled tube. The exact displacement functions are used for formulating mass matrix. The very small slopes of the tapered member are used in usual practice, such that the series expansion forms of these are also developed to avoid numerical failure in vibration analysis. Significant improvements of accuracy and efficiency of free vibration analysis are achieved by using the mass matrices developed in this study. Frequencies of free vibration of tapered members are compared with solutions based upon stepped representation of beam element.

  • PDF

Study on Self- excited Vibration of Radial Gate in Estuary Sulices due to Bottom Shape by Hydraulic Model Tests (수리모형 실험에 의한 배수갑문 원호형 문비의 하부형상에 대한 진동현상 연구)

  • Lee Seong-haeng
    • KCID journal
    • /
    • v.3 no.1
    • /
    • pp.10-19
    • /
    • 1996
  • A hydraulic model test was peformed for radial gate in estuary sulices to find out a proper bottom shape of gate which minimize the amplitudes of vibration. Firstly natural frequencies ore measured, and the results were compared with the numerical analysi

  • PDF

Non-destructive Reliability Evaluation of Electronic Device by ESPI (ESPI를 이용한 전자부품 비파괴 신뢰성평가)

  • Yoon, Sung-Un;Kim, Koung-Suk;Jo, Seon-Hyung;Kang, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.630-633
    • /
    • 2001
  • This paper propose electronic speckle pattern interferometry(ESPI) for reliability evaluation of electronic device. Especially, vibration problem in a fan of air conditioner, motor of washing machine and etc. is important factor to design the devices. But, it is difficult to apply previous method, accelerometer to the devices with complex geometry. ESPI, non-contact measurement technique applies a commercial fan of air conditioner to vibration analysis. Vibration mode shapes, natural frequency and the range of the frequency are decided and compared with that of FEM analysis. In mechanical deign of new product, ESPI adds weak point of previous method to supply effective design information.

  • PDF

Post-buckling Behavior and Vibration Characteristics of Patched Reinforced Spherical Composite Panels (패치로 보강된 구형 복합재료 패널의 후좌굴 거동 및 진동 특성해석)

  • Lee, J.J.;Yeom, C.H.;Lee, I.
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.27-34
    • /
    • 2001
  • The finite element method based on the total Lagrangian description of the motion and the Hellinger-Reissner principle with independent strain is applied to investigate the nonlinear behavior and vibration characteristics for patched reinforced laminated spherical panels. The patched elements are formulated using variable thickness at arbitrary point on the reference plane. The cylindrical arc-length method is adopted to obtain a nonlinear solution. The post-buckled vibration is assumed to be small amplitude. The effect of patch in the spherical shell Panel is investigated on the nonlinear response and the fundamental vibration characteristics. The present results show that the load-carrying capability can be improved by reinforcing patch. The fundamental frequency of patched panel is lower than that of equivalent shell panel. However, the fundamental frequency of patched panel does not decrease greatly due to the increase of nonlinear geometrical stiffness under loading.

  • PDF

Natural Frequency Measurement for Scour Damage Assessment of Caisson Pier (교량 우물통 기초의 세굴피해 평가를 위한 고유진동수 측정)

  • Nguyen, Quang-Thien-Buu;Ko, Seok-Jun;Jung, Gyungja;Lee, Ju-Hyung;Yoo, Min-Taek;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.51-60
    • /
    • 2021
  • River scour erodes the soil around the pier, reducing the lateral bearing capacity of the pier and lowering the stability of the structure. In this study, in order to examine the effect of scouring on the stability of the structure, an experiment was performed to measure the natural frequency of the pier according to the excavation of the surrounding ground. Impact vibration test was conducted on the pier with the caisson foundation of the Mangyeonggang Bridge, which is scheduled to be demolished. Accelerometers were attached to the top, center, and bottom of the pier and the acceleration responses were measured by hitting those three points. The experimental results showed that the top hit showed consistent and reasonable results of the acceleration responses according to the hitting position. The measured accelerations were converted to the frequency domain through Fast Fourier Transform (FFT), and then the natural frequency was determined. In addition, to analyze the scour effect on the natural frequency of the pier, the ground around the pier was excavated and the natural frequency change was analyzed. As a result, the natural frequency showed the decreasing tendency according to the excavation depth, but the decrease was small due to the large stiffness of the caisson foundation.

Tension Estimation of External Tendons in PC Bridges Using Vibration Measurement Method (진동 측정법을 이용한 PC교량 외부텐던의 장력 추정)

  • Park, Sung Woo;Jung, Ha Tae;Jung, Soo Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.84-92
    • /
    • 2014
  • In this study, vibrational tendon tension measurement methods are applied to estimate tension of external tendons used in segmental post-tensioned bridges. The acceleration of various length type of tendons is measured and natural frequencies are obtained using FFT (Fast Fourier Transform). The obtained natural frequencies are within 1% error regardless of sensor direction and location. On the basis of natural frequency of tendon, estimation of the tendon tension is performed by using many types of solutions such as string theory equation, multi mode estimation, practical formula estimation and stiff string with clamped-clamped boundary conditions. The results are compared with each other and have shown that the flexural stiffness is not negligible in tendons of this type causing the vibration mode to be inharmonically related. The results have shown that the method using stiff string equation with clamped-clamped boundary conditions is more accurate than the other methods. Application example of in-service bridges has shown that force distribution effects from friction at deviation blocks can be effectively detected.