• 제목/요약/키워드: 고유방정식

검색결과 323건 처리시간 0.029초

실리카 2층 Slab 도파로를 위한 고유방정식의 개선된 알고리즘 (An Inproved Algorithm of Eigenvalue Equation for Silica Double Layer Slab Waveguides)

  • 지유강;박종란;윤중현;박수봉
    • 대한전자공학회논문지SD
    • /
    • 제43권2호
    • /
    • pp.18-23
    • /
    • 2006
  • 본 논문에서는 실리콘 상의 2층 실리카 도파로에서 새로운 고유치 방정식을 도출하여, 프리즘 커플러로 굴절률과 박막의 두께를 결정하는 방법을 나타내었다. 도출된 고유치 방정식의 알고리즘은 반복 파라메터가 4개의 변수에서 3개의 변수로 감소되어질 수 있으므로 Ref.[5]의 방정식의 해보다 보다 좋은 장점을 갖으며. 또한 본 논문에 얻어진 평균 에러는 약 $10^{-5}\~10^{-6}$ 이 하였다.

개혁 미분 방정식 수업에 기반한 학습자의 고유치 고유벡터 개념 발생 및 이해 (Students' Conceptual Development of Eigenvalue and Eigenvector in Reformed Differential Equation Course)

  • 신경희
    • 한국수학사학회지
    • /
    • 제17권4호
    • /
    • pp.133-152
    • /
    • 2004
  • 18세기 오일러와 베르누이에 의해 최초로 등장했던 고유치의 개념 발생의 장은 탄성을 가진 물체의 변위에 관련된 미분 방정식의 풀이 해법 문제였다. 역사 발생적 원리에 따라 용수철에 매달린 물체의 변위 문제를 모델로 개혁 미분 방정식 수업에 기반한 학습자의 고유치 고유벡터의 효과적인 개념 발생의 가능성을 논한다. 소그룹 토의 학습으로 진행된 교수 학습 모델의 실제 적용 과정과 방법, 효과적인 인지변화에 대한 교수학적 요인과 학생들의 수학에 대한 정의적 태도의 변화를 진술한다.

  • PDF

?과 회전관성을 고려한 수평 곡선보의 자유진동 해석 (Free Vibration Analysis of horizontally Curved Beams considering Warping and Rotatory Inertia)

  • 이병구;박광규;오상진;진태기
    • 한국전산구조공학회논문집
    • /
    • 제14권1호
    • /
    • pp.35-42
    • /
    • 2001
  • 본 연구는 변화곡률 수평 곡선보의 면외 자유진동에 관한 연구이다. 뒴과 회전관성을 고려한 변화곡률 수평 곡선보의 자유진동을 지배하는 상미분방정식이 유도되었고, 이 지배미분방정식을 수치해석하여 곡선보의 고유진동수를 산출하였다. 지배미분방정식을 수치적분하기 위하여 Runge-Kutta method를 이용하였고, 고유진동수를 산출하기 위하여 Regula-Falsi method와 결합한 행렬값 탐사법을 이용하였다. 본 연구의 이론적 타당성을 검증하기 위하여 타문헌의 고유진동수와 비교하였고, 실험실 규모의 모형실험을 실시하여 이론값과 실험값의 고유진동수를 비교하였다. 수치해석의 결과로 무차원 재변수들의 변화에 따른 무차원 고유진동수를 제 3모드까지 산출하였고, 그 결과들을 고찰하였다. 본 연구의 결과는 곡선형 교량 등과 같이 곡선부재로 이루어진 구조물의 설계시에 유용하게 이용될 수 있을 것으로 기대된다.

  • PDF

복합마디방법의 고유치문제에 응용 (An Application of the Multigrid Method to Eigenvalue problems)

  • 이규봉;김성수;성수학
    • 자연과학논문집
    • /
    • 제8권2호
    • /
    • pp.9-11
    • /
    • 1996
  • Dirichlet 경계조건을 갖는 Laplace 고유치방정식의 고유치를 구하는 데 복합마디방법을 이용하였다. 유한차분법을 적용하여 행렬 고유치방정식을 만들고 이 방정식의 고유치를 구하기 위하여 역거듭제곱방법과 전체복합마디법을 사용하였다. 그 결과 고유치를 기존의 방법보다 더욱 빠르게 구할 수 있었다.

  • PDF

부분모드 방법을 이용한 점탄성 감쇠기가 설치된 건물의 고유치 해석 (Eigenvalue Analysis of the Building with Viscoelastic Dampers Using Component Mode Method)

  • 민경원;김진구;조한욱;이성경
    • 한국지진공학회논문집
    • /
    • 제2권1호
    • /
    • pp.71-78
    • /
    • 1998
  • 본 연구는 점탄성 감소기가 설치된 건물의 고유치 해석을 위하여 라그라란지 승수 방법(Lagrage multiplier formulating)을 이용하였다. 특성방정식은 건물의 고유진동수, 감소기가 설치된 층의 모드 성분, 감쇠기의 점성 및 강성에 관계된 식으로 나타났으며, 감쇠기의 점성으로 인하여 복소수의 형태로 표현이 되었다. 유도된 특성방정식은 고유치 해석을 위한 일반적인 형태의 식이 아니므로 본 연구에서는 그림 해석을 통하여 감쇠기의 설치로 인한 점성과 증가로 건물의 복소 고유진동수의 변화를 분석하는 방법을 제시하였다. 그림 해석으 결과에 따르면 감쇠기의 점성과 강성으로 인한 복소 고유진동수의 물리적인 의미를 확인할 수 있으며, 최소 및 최대값을 예측할 수 있다. 또한, 복소 고유진동수를 실수의 고유진동수와 모드 감쇠비로 변환하여 상태방정식에 의한 방법의 결과와 비교하여 정확성을 검증하였다.

  • PDF

행렬의 고유치의 수치해법

  • 이두성
    • 기계저널
    • /
    • 제26권5호
    • /
    • pp.389-393
    • /
    • 1986
  • 고유치는 여러 공학문제에서 중요하다. 예를들어 비행기의 안전성은 어떤 행렬(matrix)의 고유 치에 의해서 결정된다. 보의 고유진동수는 실제로 행렬의 고유치이다. 좌굴(buckling) 해석도 행렬의 고유치를 구하는 문제이다. 고유치는 여러 수학적인 문제의 해석에서도 자연히 발생한다. 상수계수 일계연립상미분방정식의 해는 그 계수행렬의 고유치로 구할 수 있다. 또한 행렬의 제곱의 수렬 $A,{\;}A^{2},{\;}A^{3},{\;}{\cdots}$의 거동은 A의 고유치로서 가장 쉽게 해석할 수 있다. 이러한 수렬은 연립일차방정식(비선형)의 반복해에서 발생한다. 따라서 이 강좌에서는 행렬의 고유치를 수치적으로 구하는 문제에 대하여 고찰 하고자 한다. 실 또는 보소수 .lambda.가 행렬 B의 고유치라 함은 영이 아닌 벡터 y가 존재하여 $By={\lambda}y$ 가 성립할 때이다. 여기서 벡터 y를 고유치 ${\lambda}$에 속하는 B의 고유벡터라 한다. 윗식은 또 $(B-{\lambda}I)y=0$의 형으로도 써 줄 수 있다. 행렬의 고유치를 수치적으로 구하는 방법에는 여러 가지 방법이 있으나 그 중에서 효과있는 Danilevskii 방법을 소개 하고자 한다. 이 Danilevskii 방법에 의하여 특 성다항식(Characteristic polynomial)을 얻을 수 있고 이 다항식의 근을 얻는 방법 중에 Bairstow 방법 (또는 Hitchcock 방법)이 있는데 이에 대하여 아울러 고찰하고자 한다.

  • PDF

항만 고유 진동 해석을 위한 Helmholtz 방정식의 유한요소 해법 (Finite Element Solution of Helmholtz Equation for Free Harbor Oscillation)

  • 류연선;이병걸
    • 대한토목학회논문집
    • /
    • 제13권1호
    • /
    • pp.47-54
    • /
    • 1993
  • 일반적인 기하학적 경계와 해저 지형을 가진 항만에서 해수 고유 진동 특성의 수치해석을 위하여 유한요소법이 응용되었다. 지배 방정식인 Helmholtz방정식을 일반화된 매트릭스 고유치문제로 변환하는데 표준유한요소과정을 사용하였다. 고유주기와 고유진동모우드의 수치해를 얻기위한 컴퓨터 프로그램이 개발되었고, 고유치의 수치해석과정에서 수치적 특이성을 취급하기 위해 고유치 이동기법이 고안되었으며, 수치적 악조건을 극복하기 위해서는 행렬원소의 축척화가 효과적임을 알았다. 수치예로서 먼저 해석해를 알 수 있는 경우를 해석하여 수치해와 해석해를 비교해 봄으로써 작성된 컴퓨터 프로그램의 유용성을 확인하였고, 일반적인 경계 조건과 임의 수성의 실제 항만에 유한요소 해법을 적용하여 성공적으로 고유진동의 해를 구하였다.

  • PDF

Lyapunov 방정식의 해의 고유치 및 트레이스의 범위 (Eigenvalues and trace bounds on the solutions of lyapunov equations)

  • 권욱현;김상우;박부견
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.534-538
    • /
    • 1990
  • 본 논문에서는 연속 및 이산 Lyapunov 방정식의 해의 고유치 및 트레이스의 범위를 시스템 행렬의 고유치 및 고유벡터 행렬을 이용하여 표시한다. 이산 시스템의 경우 시스템 행렬의 최대 특이치가 1보다 큰 경우나 연속 시스템의 경우 시스템 행렬의 대칭행렬이 불안정한 경우에도 상한 값이 항상 계산 가능한 범위가 제시된다. 본 논문에서 제시된 범위들은 몇가지 조건을 갖고 다른 문헌에서 제시된 것들 보다 정확하며, 더욱이 특정한 시스템 행렬에 대해서는 범위의 상한과 하한이 일치한다.

  • PDF

두 개의 매개변수로 표현되는 탄성지반 위에 놓인 낮은 아치의 최저차 대칭 및 역대칭 고유진동수 (Lowest Symmetrical and Antisymmetrical Natural Frequencies of Shallow Arches on Two-Parameter Elastic Foundations)

  • 오상진;서종원;이병구
    • 한국전산구조공학회논문집
    • /
    • 제15권2호
    • /
    • pp.367-377
    • /
    • 2002
  • 이 논문은 탄성지반 위에 놓인 낮은 아치의 자유진동에 관한 연구이다. Pasternak가 제안한 두 개의 매개변수로 표현되는 지반모형을 채택하여 대상아치의 자유진동을 지배하는 미분방정식을 유도하였다. 양단회전 및 양단고정의 단부 조건을 갖는 두 종류의 아치선형을 유도된 지배방정식에 적용하여 Galerkin method로 해석함으로써 최저차 대칭 및 역대칭 고유진동수 방정식을 산출하였다 아치높이, Winkler지반계수 및 전단지반계수가 고유진동수에 미치는 영향을 분석하였으며, 아치선형이 고유진동수에 미치는 영향을 분석하였다.

현수 곡선부재의 면내 자유진동 해석 (Planar Free Vibrations of Catenary Arcs)

  • 이병구;오상진;서주석
    • 대한토목학회논문집
    • /
    • 제10권3호
    • /
    • pp.19-28
    • /
    • 1990
  • 현수 곡선부재가 면내 자유진동할 때 발생하는 변위에 의한 합응력과 질량을 갖는 부채의 미소요소에 작용하는 관성력에 대한 동적 평형방정식을 이용하여 현수 곡선부재의 면내 자유진동을 지배하는 미분방정식을 유도하였다. 이 미분방정식에는 회전관성효과를 고려하였다. 이 미분방정식을 양단힌지 및 양단고정의 단부조건을 갖는 현수 곡선부재에 적용시키고 고유진동수와 진동형을 구하기 위하여 시행착오적 고유치문제와 Improved Euler method를 이용하여 수치해석 하였다. 수치해석 결과로 회전관성이 고유진동수에 미치는 영향을 고찰하고, 고유 진동수와 곡선부재 높이와의 관계 및 고유진동수와 세장비와의 관계를 그림에 나타내었다. 또한 진동형의 예를 그림에 나타내었다.

  • PDF