두 개의 매개변수로 표현되는 탄성지반 위에 놓인 낮은 아치의 최저자 대칭 및 역대칭 고유진동수

Lowest Symmetrical and Antisymmetrical Natural Frequencies of Shallow Arches on Two-Parameter Elastic Foundations

오상진† 서종원* 이병구**

† Oh, Sang-Jin
* Ser, Jong-Won
** Lee, Byoung-Koo

요 지

이 논문은 탄성지반 위에 놓인 낮은 아치의 자유진동에 관한 연구이다. Pasternak가 제안한 두 개의 매개변수로 표현되는 지반모형을 체계하여 대상자의 자유진동을 지배하는 미분방정식을 유도하였다. 일반회전 및 일반교점의 단면조건을 갖는 두 종류의 아치진형을 유도된 적층방정식에 적용하여 Galerkin method로 해석함으로써 최저자 대칭 및 역

대칭 고유진동수 방정식을 심층하였다. 아치높이, Winkler지반계수 및 전단지반계수가 고유진동수에 미치는 영향을 분석하였으며, 아치진형이 고유진동수에 미치는 영향을 분석하였다.

핵심어 : 낮은 아치, 자유진동, Pasternak지반, 고유진동수, 진동수 방정식

Abstract

This paper deals with the free vibrations of shallow arches resting on elastic foundations. Foundations are assumed to follow the hypothesis proposed by Pasternak. The governing differential equation is derived for the in-plane free vibration of linearly elastic arches of uniform stiffness and constant mass per unit length. Two arch shapes with hinged-hinged and clamped-clamped end constraints are considered in analysis. The frequency equations (lowest symmetrical and antisymmetrical frequency equations) are obtained by Galerkin’s method. The effects of arch rise, Winkler foundation parameter and shear foundation parameter on the lowest two natural frequencies are investigated. The effect of initial arch shapes on frequencies is also studied.

Keywords : shallow arch, free vibration, Pasternak foundation, natural frequency, frequency equation

1. 서 론

지반 위에 놓인 구조물의 기동특성은 구조공학, 기초공학 및 건축재료학에서 중요한 연구대상으로 취급되어 이에 관련한 많은 연구가 수행되고 있다. 지반-구조물 상호작용과 관련된 많은 문제들은 탄성지반 위에 놓인 보로로서 모형화할 수 있으며, 이에 대한 가장

실제적인 예로서는 철도도로, 파이프라인 및 뜨기초
두 개의 매개변수로 표현되는 탄성지반 위에 놓인 낮은 아치의 지반계 및 역대장 고유진동수

(strip footing) 등을 들 수 있다.

최근에도 다양한 조건을 갖는 탄성지반 위에 놓인 브의 동적공중에 관한 연구\(^{17-18}\)이 활발히 이루어지고 있다. 이들 연구에서 다루고 있는 대상구조는 대부분 지반이다. 하지만 실제 구조물에는 초기곡률을 갖는 구조물이 존재하고 있어 이에 대한 연구결과가 필요하다. 그러나 Laura와 Maurizi\(^{19}\)가 고찰한 바와 같이 지반 위에 놓인 구조물의 동적특성에 관한 유용한 연구결과는 부족한 실정이다.

문헌 (7-10)에서는 지반 위에 놓인 원형공 구조물에 중하중이 작용하는 경우 정적공중특성에 관한 연구가 이루어졌으며, 문헌 (11-15)에서는 다양한 단부조건을 갖는 지반 위에 놓인 원형공 구조물의 변위와 자유진동에 관한 연구가 수행되었다. 그리고 지반 위에 놓인 구조물의 변형계속에 관한 연구로서 Simitser\(^{10,17}\)는 Winkler형 지반 위에 놓인 낮은 아치의 정적안정 영역을 제시하였다.

공학에서 지반 위에 놓인 구조물의 동적특성에 일반적으로 이용되고 있는 지반모형은 Winkler모형이다. 이는 지반을 독립적인 소프트로 표현한 간단한 모형이지만, 하중작용의v^2양이 근경한 지역의v^2양에 영향을 미치지 못하는 단점을 가지고 있다. 이러한 문제를 해결하기 위하여 지반연속성(continuity of the foundation)을 고려하기 위하여 Pasternak로의 지반변형 모형을 이용하는 비연속성 지반모형을 Winkler모형에 연결한 지반모형을 제안하였다.\(^{18}\)

이상에서 살펴본 바와 같이 많은 연구자들은 의해 탄성지반 위에 놓인 지반계의 변형 및 자유진동의 여\(^{19}\)의 자유진동에 대한 연구가 이루어졌지만, 탄성지반 위에 놓인 구조물의 변위와 변형계속에서 놓인 구조물의 변위와 자유진동에 대한 연구는 이루어지지 않았다.

이상과 같이 연구내용으로 본 연구에서는 탄성지반 위에 놓인 낮은 아치의 고유진동수를 구하고자 한다. 여기서 낮은 아치라 반복성결에 의해 높이가 상대적으로 낮은 구조물로 볼 수 있다. 본 연구에서는 Pasternak\(^{10}\)가 제안한 두 개의 매개변수로 표현되는 지반모형을 바탕하여 대상구조의 변형 자유진동을 지배하는 미방정식을 유도하였다. 유도된 미방정식에 양단조건 및 양단조건의 단부조건을 갖는 두 종류의 정형이지를 적용하고, Galerkin method를 이용하여 해석하였다. 해석결과로서 아치높이, Winkler지반계수, 전체지반계수의 항으로 표현되는 고유진동수 방정식을 식별하여 제시하였다.

2. 수학적 모형 및 고유진동수 방정식

그림 1은 탄성지반 위에 놓인 낮은 아치의 제반수 및 진동형을 나타낸 것이다. 이 그림에서 f는 각각 지반점과 아치높이, $v(x,t)$는 변형된 아치곡률을 입의로 x좌표, q는 지반력을 나타낸다. 한편 $w(x,t)$는 변형된 아치곡률을 기준으로 측정된 진동변위로서 이를 조화 진동식으로 표현함에 있어서 식(1)과 같으며, 이후 w로 표기 한다.

![그림 1. 탄성지반 위에 놓인 낮은 아치의 제반수 및 진동형](image)

\[w(x,t) = w_0 \sin(\omega t), \quad i = 1, 2, \ldots \]

(1)

식(1)에서 w_0는 초드진동의 진폭으로 x만의 함수이며, w_0는 고유진동수, ξ는 시간, ω는 오도주파수이다. 그림 1에 보여지듯이 아치가 변연에서 진동하고 있는 그림 2에 보여지듯이, 두 개의 부재 미소요소에 의해 진단력 V, 힘모멘트 M 및 추력 N이 발생하게 된다. 또한 절명을 가지고 있는 부재 미소요소에는 완성된
\[\rho A \frac{\partial^2 \psi}{\partial t^2} + \frac{\partial V}{\partial x} + \rho A \frac{\partial^2 w}{\partial t^2} + q = 0 \] \hspace{1cm} (2)

\[V = \frac{\partial M}{\partial x} - N \left(\frac{\partial w}{\partial x} + \frac{\partial \psi}{\partial x} \right) = 0 \] \hspace{1cm} (3)

식 (2)에서 \(\rho \)는 부재재료의 단위체적당 질량, \(A \)는 단면적이다.

Pasternak가 제안한 지반모형을 사용하는 경우 지반반력 \(q \)는 식 (4)와 같이 표현된다.\(^{15}\)

\[q = Kw - G \frac{\partial^2 w}{\partial x^2} \] \hspace{1cm} (4)

위의 식에서 \(K \)는 Winkler 지반계수, \(G \)는 전단지반계수(shear foundation modulus)이다. 한편 전동변위에 의한 주력 \(N \)은 식 (5)과 같다.\(^{17}\)

\[N = \frac{EA}{2l} \int \left[\left(\frac{\partial V}{\partial x} \right)^2 - \left(\frac{\partial w}{\partial x} + \frac{\partial \psi}{\partial x} \right)^2 \right] dx \] \hspace{1cm} (5)

식 (5)에서 \(E \)는 재료의 탄성계수이다.

Bernoulli-Euler 보이 itemprop에 의한 움-곡률사이의 관계는 식 (6)과 같다.

\[M = EI \frac{\partial^2 w}{\partial x^2} \] \hspace{1cm} (6)

여기서 \(I \)는 단면2차모멘트이다. 식 (6)을 식 (3)과 대입하여 \(\partial V/\partial x \)를 구한 후 이를 식 (4)와 함께 식 (2)과 대입하고 정리하면 다음의 편미분방정식을 얻을 수 있다.

\[EI \frac{\partial^4 w}{\partial x^4} + N \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 \psi}{\partial x^2} \right) + Kw \]

\[= G \frac{\partial^4 w}{\partial x^4} + \rho A \frac{\partial^2 w}{\partial t^2} = 0 \] \hspace{1cm} (7)

무차원 형태의 지반미분방정식을 얻기 위하여 다음의 무차원 변수들을 이용한다.

\[\eta = \frac{w}{l}, \quad \xi = \frac{x}{l}, \quad \delta = \frac{v}{l} \] \hspace{1cm} (8-10)

\[k = \frac{Kl^4}{EI}, \quad g = \frac{Gl^2}{EI} \] \hspace{1cm} (11.12)

식 (1)와 식 (5)을 식 (7)에 대입하고, 식 (8)~(12)의 무차원 변수들 이용하여 정리하면 다음의 무차원 미분방정식을 얻을 수 있다.

\[\frac{d^4 \eta}{d\xi^4} - \left(\frac{1}{r} \right)^2 \frac{d^2 \delta}{d\xi^2} \frac{d^2 \delta}{d\xi^2} - \frac{\partial^2 \psi}{\partial x^2} - C_1 \eta = 0 \] \hspace{1cm} (13)

식 (13)에서 \(r \)은 식 (14)에 보인 단면회전반경이고, \(C_1 \)는 무차원 고유주파수로서 그 내구는 식 (15)와 같다.

\[r = \sqrt{\frac{I}{A}}, \quad C_1 = \omega r \sqrt{\frac{EI}{A}} \] \hspace{1cm} (14.15)

이상에서 식 (13)은 전동층을 갖는 단성지반의 대입 시에 놓인 낮은 아직의 자유진동을 지배하는 미분방정식이다.

단부가 회전단 (\(\xi = 0 \) 또는 1에서)인 경우 전동변위와 식 (6)의 움모멘트가 0이므로 무차원 변수를 사용하여 경계조건식을 나타내면 다음과 같다.

\[\eta = 0, \quad \frac{d^2 \eta}{d\xi^2} = 0 \] \hspace{1cm} (16.17)

고정단 (\(\xi = 0 \) 또는 1에서)인 경우에는 전동변위와 단면회전각이 0이므로 무차원 경계조건식은 다음과 같다.

\[\eta = 0, \quad \frac{d \eta}{d\xi} = 0 \] \hspace{1cm} (18.19)

본 연구에서는 해석 해석으로 식 (20)과 (21)의 선형 식으로 표현되는 방식을 택하였다. 그림 3은 이 식들로 계산되는 아치 선형을 나타낸 것이며, 이후 식 (20)의 선형을 shape 1, 식 (21)의 선형을 shape 2로 표기한다.
\[y = H \sin \left(\frac{2\pi x}{l} \right) \] \hspace{1cm} (20)

\[y = \frac{H}{2} \left[1 - \cos \left(\frac{2\pi x}{l} \right) \right] \] \hspace{1cm} (21)

식 (20) 및 (21)은 무차원 변수로 이루어져 다시 쓰면 식 (22), 식 (23)과 같다.

\[\delta = k \sin (\pi \xi) \] \hspace{1cm} (22)

\[\delta = \frac{h}{2} \left[1 - \cos (2\pi \xi) \right] \] \hspace{1cm} (23)

위의 식들에서 \(k \)는 아치높이 \(H \)를 지진길이 \(l \)으로 정규화한 것이다.

본 연구에서는 식 (13)의 지배 미분방정식을 해석하기 위하여 고전적인 해석법 중의 하나인 Galerkin method를 이용하였다. 조화진동의 전역을 식(24)와 같이 나타낼 수 있다고 가정하면, 식(25)와 같이 Galerkin 방정식으로 나타낼 수 있다.\(^{19}\)

\[a_i = \sum a_i \phi_i \] \hspace{1cm} (24)

\[\int_Q Q(y) \phi_i d\xi = \int_l Q(y) \sum a_i \phi_i \phi_j d\xi = 0, \quad i = 1, 2, \ldots, j \] \hspace{1cm} (25)

\[Q(y) = \frac{d^4 y}{d\xi^4} - \left(\frac{l}{r} \right)^2 \frac{d^2 y}{d\xi^2} + \frac{d}{d\xi} \int_0^l \frac{d\phi}{d\xi} d\psi d\zeta \]

\[+ x^2 k_0 - x^2 g \frac{d^2 y}{d\xi^2} - C_0^2 y \] \hspace{1cm} (26)

식 (25)에서 \(Q(y) \)의 내용은 식 (26)과 같다.

\[Q(y) = \frac{d^4 y}{d\xi^4} - \left(\frac{l}{r} \right)^2 \frac{d^2 y}{d\xi^2} + \frac{d}{d\xi} \int_0^l \frac{d\phi}{d\xi} d\psi d\zeta \]

\[+ x^2 k_0 - x^2 g \frac{d^2 y}{d\xi^2} - C_0^2 y \] \hspace{1cm} (26)

대상아치의 단단도가 양단회전인 경우 식 (16) 및 식 (17)의 경계조건을 만족하는 함수 \(\phi_i \)는 식 (27)과 같이 나타낼 수 있다.

\[\phi_i = \sin (\pi \xi) \] \hspace{1cm} (27)

그리고 양단회전인 경우 식 (18) 및 (19)의 경계조건을 만족하는 식 (27) 및 (28)의 \(i = 1 \) 및 \(i = 2 \)에 대응하는 \(\phi_i \)를 나타낼 것이다.

그림 4는 양단회전 및 양단회전인 경계조건을 만족하는 식 (27) 및 (28)의 \(i = 1 \) 및 \(i = 2 \)에 대응하는 \(\phi_i \)를 나타낸 것이다.

본 연구에서는 근사적인 교류진동수 방정식을 얻기 위하여 각각의 해당 진동형에 대한 1개의 항만을 고려한 해를 얻었다. 먼저 식 (22)의 싱 Sonata를 얻는 양단회전 아치인 경우 \(i = 1 \) 및 \(i = 2 \)에 대한 식 (27) 및 (25)에 대입하여 정리하면 식 (29) 및 식 (30)을 얻을 수 있다.

\[a_i \left[x^4 + \frac{1}{2} x^2 h^2 \left(\frac{l}{r} \right)^2 \right] + x^4 k + x^4 g - C_0^2 = 0 \] \hspace{1cm} (29)

\[a_2 \left[16 \pi^4 + x^4 k + 4x^4 g - C_0^2 \right] = 0 \] \hspace{1cm} (30)

식 (29)와 식 (30)에서 \(C_0 \)는 대칭진동형을 갖는 최저자 교류진동수(lowest symmetrical frequency), \(C_A \)는 역대칭진동형을 갖는 최저자 교류진동수(lowest antisymmetrical frequency)이며, 이 식들로부터 \(C_0 \)와 \(C_A \)의 값을 구하는 식 (31)과 같다.

\[C_0 = x^4 \sqrt{1 + k + x^2 \frac{1}{2} h^2} \] \hspace{1cm} (31a)

\[C_A = x^4 \sqrt{16 + k + 4g} \] \hspace{1cm} (31b)
식 (31a)에서 λ의 내용은 식 (32)에 나타낸 바와 같이, 이는 이차원을 다시 정의하기 위한 무차원 변수이다.

$$\lambda = H/r$$ \hspace{1cm} (32)

마찬가지로 식 (25)와 (28)을 이용하면 식 (33)과 같이 식 (22)의 선형을 갖는 양단회전 및 양단고정 아치에 대한 고유전동수 방정식이 얻어진다.

$$C_s = \pi^2 \sqrt{\frac{16}{3} + k + \frac{4}{3} g + \frac{128}{27 \pi^2} \lambda^2}$$ \hspace{1cm} (33a)

$$C_A = \pi^2 \sqrt{41 + k + 5g}$$ \hspace{1cm} (33b)

이상에서 식 (31)과 (33)은 각각 shape 1의 선형을 갖는 양단회전 및 양단고정 아치의 무차원 고유전동수 방정식이다.

다음으로 식 (23), 식 (25), 식 (27)을 이용하면 shape 2의 선형을 갖는 양단회전 아치의 고유전동수 방정식이 다음 식과 같이 구해진다.

$$C_s = \pi^2 \sqrt{1 + k + g + \frac{16}{9\pi} \lambda^2}$$ \hspace{1cm} (34a)

$$C_A = \pi^2 \sqrt{16 + k + 4g}$$ \hspace{1cm} (34b)

또한 식 (23), 식 (25), 식 (28)을 이용하면 shape 2의 선형을 갖는 양단고정 아치에 대한 무차원 고유전동수 방정식을 식 (35)과 같이 구할 수 있다.

$$C_s = \pi^2 \sqrt{\frac{16}{3} + k + \frac{4}{3} g + \frac{27}{\pi^2} \lambda^2}$$ \hspace{1cm} (35a)

$$C_A = \pi^2 \sqrt{41 + k + 5g}$$ \hspace{1cm} (35b)

이상에서 식 (34)와 식 (35)는 각각 shape 2의 선형을 갖는 양단회전 및 양단고정 아치의 무차원 고유전동수 방정식이다.

3. 해석 예 및 고찰

3.1 결과검증

본 연구결과를 검증하기 위하여 문헌 [2, 20]의 결과와 표 1에 비교하였다. 이 표에서 $\lambda = 0$은 적절한 결과로서 본 연구결과와 문헌의 결과가 매우 우수하게 근접함을 알 수 있다. 특히 양단회전의 단부조건을 갖는 경우 본 연구결과와 문헌의 결과는 일치함을 알 수 있는데, 이는 본 연구에서 가정한 양단회전의 단부조건에 대한 함수 ϕ_0가 정확하게 있기 때문이다.

또한 단성지반 위에 놓인 아치문제에 대해서는 본
<table>
<thead>
<tr>
<th>조 건</th>
<th>비 교</th>
<th>부처한 고유전동수</th>
<th>비 교</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C_1</td>
<td>C_2</td>
</tr>
<tr>
<td>양단회전</td>
<td>$\lambda=0$, $k=0.5$, $g=2.0$</td>
<td>본 연구</td>
<td>18.46 (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>문헌(2)</td>
<td>18.46 (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>차이(%)</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>$\lambda=10$, $k=2.0$, $g=0.0$</td>
<td>본 연구</td>
<td>17.08 (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>문헌(20)</td>
<td>17.09 (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>차이(%)</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>$\lambda=3.0$, $k=3.0$, $g=0.0$</td>
<td>본 연구</td>
<td>41.87 (A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAP90</td>
<td>40.67 (A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>차이(%)</td>
<td>2.39</td>
</tr>
<tr>
<td>양단고정</td>
<td>$\lambda=0$, $k=0.0$, $g=2.0$</td>
<td>본 연구</td>
<td>23.40 (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>문헌(2)</td>
<td>23.80 (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>차이(%)</td>
<td>1.71</td>
</tr>
<tr>
<td></td>
<td>$\lambda=4.5$, $k=2.0$, $g=0.0$</td>
<td>본 연구</td>
<td>30.95 (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>문헌(20)</td>
<td>30.64 (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>차이(%)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>$\lambda=3.0$, $k=1.0$, $g=0.0$</td>
<td>본 연구</td>
<td>43.41 (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAP90</td>
<td>43.16 (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>차이(%)</td>
<td>0.55</td>
</tr>
</tbody>
</table>

* 차이(%) = |1-본 연구/문헌| \times 100
** S : 대칭전동형, A : 역대칭전동형

연구결과와 구조적응용 방향 프로그램인 SAP90의 결과를 비교하였다. SAP90의 결과는 대상어치의 100 개의 각각의 요소로 포함되었다. 아치분석에 있어서도 본 연구 결과와 SAP90의 결과는 비교적 잘 근접함을 알 수 있다. 이상에서 본 연구결과와 타문헌의 결과 비교를 통하여 본 연구결과의 타당성을 검증할 수 있었다.

3.2 아치높이에 따른 고유전동수

그림 5와 6은 각각 shape 1과 2의 양단회전 아치, 그림 7과 8은 양단고정 아치의 부처한 고유전동수와 아치높이 λ의 관계를 나타낸 것으로 각 그림의 (a) ~ (d)는 각각 위inker지반계수 $k=0$, 2, 5, 7에 대한 결과이다. 이 그림들에서 ○, ●, □, △는 표시된 값의 $g = 0$ 즉, 지반연속성을 고려하지 않은 경우, ■는 $g = 1$, ▲는 $g = 3$에 대한 결과로서, ○, □는 대칭전동형, ●, ■, ▲는 역대칭전동형에 대한 고유전동수를 나타내고 있다. 이 그림들에서는 다른 조건이 동일한 경우 아치높이 λ가 증가함에 따라 대칭모드의 최저자 고유전동수는 증가하지만 역대칭모드의 최저자 고유전동수는 일정함을 알 수 있다. 이는 (31)과 식(33)~(35)에서 알 수 있는 바와 같이 역대칭모드인 경우 고유전동수 방정식에 아치높이 λ이 포함되어 있지 않기 때문이다. 그러나 λ가 일정값에 도달하는 경우 두 곡선의 교차점이 나타나게 되는데, 이 점에서는 1개의 고유전동수에 대하여 대칭과 역대칭 중 두 개의 전동형이 존재할 수 있다. 따라서 이 점을 지나기 전에는 대칭모드의 최저자 고유전동수가 제1고유전동수이며, 이 점을 지나 후에는 역대칭모드의 최저자 고유전동수가 제1고유전동수가 된다.

그림 5, 8에서 지반연속성을 고려하는 경우 고유전
동수는 항상 증가하며, 대칭모드인 경우 \(\lambda \)가 작을수록 영향이 커질 수 있다. 그러나 역대칭모드인 경우에 는 \(\lambda \)에 관계없이 지반연속성의 영향이 일정함을 알 수 있다.

그림 5~8에서 동일한 전단지반계수 \(k \)를 갖는 경우 대칭모드와 역대칭모드 국신의 교차점은 \(k \)에 관계없이 모두 일정함을 알 수 있다. Shape 1의 양단통전 아치에서는 \(g = 0 \)인 경우 \(\lambda = 5.477, g = 1 \)인 경우 \(\lambda = 6.498 \), \(g = 3 \)인 경우 \(\lambda = 6.928 \), shape 2의 양단통전 아치에서는 \(g = 0 \)인 경우 \(\lambda = 9.125, g = 1 \)인 경우 \(\lambda = 9.996 \)에서 두 국선이 교차함을 알 수 있다 \((g = 3 \text{인 경우 } \lambda = 11.54 \text{에서 교차함으로 이 그림에 나타나지 않음})

또한 Shape 1의 양단고정 아치에서는 \(g = 0 \)인 경우 \(\lambda = 8.617, g = 1 \)인 경우 \(\lambda = 9.049, g = 3 \)인 경우 \(\lambda = 9.857 \), shape 2의 양단고정 아치에서는 \(g = 0 \)인 경우 \(\lambda = 7.314, g = 1 \)인 경우 \(\lambda = 7.681, g = 3 \text{인 경우 } \lambda = 8.367 \text{에서 두 국선이 교차함을 알 수 있다.}

한편 그림 5와 6을 비교하면 나머지 조건이 동일한 경우 shape 1의 선택을 갖는 아치가 shape 2의 선택을 갖는 아치에 비해 대칭전동형에 대응하는 고유진동수 \(C_2 \)가 더 클을 알 수 있다. 이러한 결과는 shape 1의 선택이 양단통전 아치인 경우 최대의 최저자 고유진동수를 갖는 최적형상에 근거하기 때문이다. 그러나 그림 7과 8을 비교하면 나머지 조건이 동일한 경우 shape 2의 선택을 갖는 아치가 shape 1의 선택을 갖는 아치에 비해 대칭전동형에 대응하는 고유진동수 \(C_2 \)가 더 클을 알 수 있다. 이러한 결과 역시 문헌 [21]에서 고찰된 바와 같이 shape 2의 선택이 양단고정 아치인
 두 개의 매개변수로 표현되는 탄성빈대에 놓인 낮은 아치의 최저자 대칭 및 역대칭 고유영동수

경우 최대의 최저자 고유영동수를 갖는 최적렇행에 근
 접하기 때문이다.

3.3 지반처짐에 따른 고유영동수

그림 9와 10은 각각 shape 1과 2인 양단환전 아치의
무차원 고유영동수와 Winkler지반계수 \(k \)의 관계를 나
타낸 것으로 각 그림중 (a)~(d)는 각각 \(\lambda = 0, 4, 8, 10 \)
에 대한 결과이다. 이 그림들은서의 기호는 앞서 그림 5~
8에서 설명한 바와 같다. 이 그림에서 Winkler지반계
수 \(k \)가 증가하는 경우 고유영동수는 항상 증가함을 알
수 있다.

이 그림들에서 아치높이 \(\lambda \)가 증가하는 경우 □, ○,
\(\triangle \)로 표시된 대칭영동형에 대한 고유영동수는 증가하
지만, ■, ●, △로 표시된 역대칭영동형에 대한 고
유영동수는 일정한 값을 나타내고 있다. 따라서 앞서
그림 5~8에서 고찰한 바와 같이 shape 1의 선행을 갖는
양단환전 아치에서는 \(g = 0 \)인 경우 \(\lambda = 5.477,
\lambda = 0 \)인 경우 \(\lambda = 6, \lambda = 3 \)인 경우 \(\lambda = 6.928 \)보다 큰
아치높이 \(\lambda \)에 대해서는 역대칭영동형이 제1고유영동수,
대칭영동형이 제2고유영동수가 된다. 또한 shape 2의
선행을 갖는 양단환전 아치에서는 \(g = 0 \)인 경우 \(\lambda = 9.125,
\lambda = 1 \)인 경우 \(\lambda = 9.996 \)보다 큰 아치높이 \(\lambda \)에 대해서
는 역대칭영동형이 제1고유영동수, 대칭영동형이 제2
고유영동수가 된다 (\(g = 3 \)인 경우에는 \(\lambda = 11.54 \)에서
교차하므로 \(\lambda = 0 \)~\(10 \)에서의 대칭모드에 대한 최저자
고유영동수가 항상 제1고유영동수이다).

그림 11과 12는 각각 shape 1과 2인 양단고정 아
치의 무차원 고유영동수와 Winkler지반계수 \(k \)의 관계
를 나타낸 것으로 각 그림의 (a)~(d)는 각각 \(\lambda = 0, 6,
\lambda = 10, 12 \)를 나타낸다.
9, 12에 대한 결과이다. 이 그림들에서 기호의 내용은 그림 9 및 10과 같으며, Winkler지반계수에 따른 무차원 고유진동수의 변화는 전반적으로 그림 9 및 10에
서와 같다. 여기에서도 shape 1의 전형은 얕은 고정 아치에서는 $g=0$인 경우 $\lambda=8.617$, $g=1$인 경
우 $\lambda=9.049$, $g=3$인 경우 $\lambda=9.857$보다 큰 아치높
이 A에서는 역대칭진동형이 제1고유진동수, 대칭
진동형이 제2고유진동수가 된다. 또한 shape 2의 전
형을 갖는 얕은고정 아치에서는 $g=0$인 경우 $\lambda=7.314$,
$g=1$인 경우 $\lambda=7.681$, $g=3$인 경우 $\lambda=8.367$보
다 큰 아치높이 A에서는 역대칭진동형이 제1고유
진동수, 대칭진동형이 제2고유진동수가 된다.

3.4 대칭 및 역대칭모드의 최저자 고유진동수가 동일한 아치높이

식 (31)과 식 (33)∼(35)의 고유진동수 방정식에서 아치높이 A가 증가하는 경우 C_s는 증가하지만, C_A는
A와 무관함을 알 수 있다. 따라서 아치높이가 증가하
여 일정값에 도달하면 $C_s=C_A$인 경우가 존재함을 예
측할 수 있다. 이는 1개의 고유진동수에 대하여 대칭
및 역대칭 진동형 중, 2개의 진동형이 존재함을 알음
을 의미한다. 이와 같이 $C_s=C_A$인 경우는 물리적으
로 중요한 의미를 갖는다.

Shape 1의 전형을 갖는 얕은회전 및 얕은고정 아치
의 고유진동수 방정식 식 (31)과 (33)으로부터 $C_s=C_A$
가 되는 아치높이식을 산출하면 다음과 같다.

\[
\text{양단회전: } \lambda = \sqrt{30 + 6g} \tag{36}
\]
\[
\text{양단고정: } \lambda = \frac{3\pi}{8\sqrt{2}} \sqrt{107 + 11g} \tag{37}
\]

또한 shape 2의 전형을 갖는 얕은회전 및 얕은고정
아치의 고유진동수 방정식 식 (34)와 (35)로부터 $C_s=C_A$
가 되는 아치높이식을 구하면 다음과 같다.

\[
\text{양단회전: } \lambda = \frac{3\pi}{4} \sqrt{15 + 3g} \tag{38}
\]
\[
\text{양단고정: } \lambda = \frac{1}{\sqrt{2}} \sqrt{107 + 11g} \tag{39}
\]

4. 결론

이 논문은 두 개의 매개변수로 표현되는 탄성지반
위에 놓인 낮은 아치의 자유진동에 관한 연구로서 여기
서 얻어진 결과는 다음과 같다.

1) 두 개의 매개변수로 표현되는 탄성지반 위에 놓인 낮은 아치의 자유진동을 기해하는 미분방정식을 유
도하였으며, 유도된 미분방정식에 얕은회전 및 얕
단고정의 단부조건을 갖는 두 종류의 경계조건을
적용하여 Galerkin method로 해석하였다.
2) 대칭 및 역대칭 진동형에 대한 최저자 고유진동수 방정식을 산출하여 식(31) 및 식(33)~(35)에 제시하였다.
3) 본 연구와 타문헌의 결과를 비교하여 산출된 고유 진동수 방정식을 검증하였다.
4) 대칭 및 역대칭 진동형의 최저자 고유진동수가 동일한 아치높이식을 산출하여 식(36)~(39)에 제시하였다.
5) 해석을 통해 얻어진 결과를 가지고 무차원 고유진동수와 아치높이, Winkler지반계수, 진단지반계수 사이의 관계를 분석하였다.

참고문헌

2. 이병구, "진단층을 갖는 탄성진동에 놓인 보의 자유진동 해석", 한국강조공학회 논문집, 제6권 제3호, 1994, pp.107~110
5. 신병짜, 김재호, 황경기, "Differential Transformation 에 의한 2 파라미터 탄성기초에 설치된 보의 진동해석", 한국소음진동공학회 논문집, 제11권, 제4호, 2001, pp.357~363
15. 이병구, 박광주, 오상진, "두 개의 태개변수로 표현되는 탄성진동에 놓인 윙글러 지반계의 자유진동", 한국전산구조공학회 논문집, 제12권, 제4호, 1999, pp.661~669