• Title/Summary/Keyword: 고온에서 고강도콘크리트의 특성

Search Result 50, Processing Time 0.025 seconds

Creep Behavior of High-Strength Concrete with Nylon Fibers at Elevated Temperatures (고온을 받은 나일론 섬유 보강 고강도 콘크리트의 크리프 거동)

  • Kim, Young-Sun;Lee, Tae-Gyu;Kim, Woo-Jae;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.627-636
    • /
    • 2011
  • Recently, to prevent explosive spalling of high-strength concrete (HSC) members, the usage of nylon fiber instead of polypropylene fiber has increased. Past experimental studies have been conducted to examine the spalling and mechanical properties of HSC with nylon fibers when exposed to elevated temperature. However, the previous studies on HSC with nylon fibers subjected to high temperatures were performed only on the properties such as spalling, compressive strength, and elastic modulus rather than investigations on to the behaviors such as thermal strain, total strain, steady state creep, and transient creep. Therefore, in this study thermal strain, total strain, steady state creep, and transient creep of HSC mixed with nylon fibers with water to binder ratio of 0.30 to 0.15 were tested. The experimental results showed that nylon fibers did not affect the performance of HSC with nylon fibers at high temperatures. However, HSC with nylon fibers generated a larger transient creep strain than that of HSC without fibers and normal strength concrete.

Evaluation for Mechanical Properties of High Strength Concrete at High Temperature by Stressed Test and Unstressed Test (설계하중 사전재하 및 비재하방식에 의한 고강도콘크리트의 고온특성 평가)

  • Kim, Gyu-Yong;Kim, Young-Sun;Lee, Tae-Gyu;Park, Chan-Kyu;Lee, Seung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.583-592
    • /
    • 2008
  • Recently, the effects of high temperature on compressive strength, elastic modulus and strain at peak stress of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 to 700 on the material mechanical properties of high strength concrete of 40, 60, 80 MPa grade. In this study, the types of test were the stressed test and stressed residual test that the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating and when target temperature is reached, the specimens are loaded to failure. And another specimens are loaded to failure after 24 hour cooling time. Tests were conducted at various temperatures ($20{\sim}700^{\circ}C$) for concretes made with W/B ratios 46%, 32% and 25%. Test results showed that the relative values of compressive strength and elastic modulus decreased with increasing compressive strength grade of specimen and the axial strain at peak stress were influenced by the load before heating. Thermal strain of concrete at high temperature was affected by the preload level as well as the compressive strength. Finally, model equation for compressive strength and elastic modulus of heated high strength concrete proposed by result of this study.

Performance Evaluation of High Strength Concrete with Composite Fibers in Accordance with High Temperature (복합섬유가 혼입된 고강도 콘크리트의 고온가열에 따른 성능 평가)

  • Kim, Seung-Ki;Kim, Woo-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.63-71
    • /
    • 2015
  • The objective of the present study is to investigate how elevated temperature ranging from $100^{\circ}C$ to $800^{\circ}C$ as well as room temperature affects the variation of mechanical properties of high strength concrete ($over\;f_{ck}=60MPa\;grade$). In this experiment, specimens were exposed for a period of $2^{\circ}C/min$ to temperatures of $20^{\circ}C$, $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$ $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$ and $800^{\circ}C$, respectively. Accordingly, the study investigated the fire resistance performance of high strength concrete mixed with composite fibers which composed with hybrid fibers and steel fibers. After cooling down to ambient temperature, the following basic mechanical properties were then evaluated and compared with reference values obtained prior to thermal exposure: (i) compressive strength in room temperature; (ii) residual compressive strength; (iii) Poisson's ratio; (iv) weight change; (v) SEM analysis & XRD analysis In addition, XRD and SEM Images analyses were performed to investigate chemical and physical characteristics of high strength concrete with composite fibers according to high temperature.

Evaluation For Mechanical Properties of High strength Concrete by Stressed Test and Tressed Residual Strength Test (설계하중 사전재하 및 잔존강도 시험방법에 따른 고강도콘크리트의 고온특성평가 -제 1보, 강도특성을 중심으로-)

  • Lee, Tae-Gyu;Kim, Young-Sun;Lee, Eui-Bae;Park, Chan-Gyu;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.869-872
    • /
    • 2008
  • Recently, the effects of high temperature on compressive strength, elastic modulus and strain at peak stress of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 to $700^{\circ}C$ on the material mechanical properties of high-strength concrete of 40, 60, 80MPa grade. In this study, the types of test were the stressed test and stressed residual test that the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating and when target temperature is reached, the specimens are loaded to failure. Or specimens are loaded to failure after 24hour cooling time. tests were conducted at various temperatures ($20{\sim}700^{\circ}C$) for concretes made with W/B ratios 46%, 32% and 25%. Test results showed that the relative values of compressive strength and elastic modulus decreased with increasing compressive strength grade of specimen.

  • PDF

Evaluation of Properties of 80, 130, 180 MPa High Strength Concrete at High Temperature with Heating and Loading (고온가열 및 하중재하에 따른 80, 130, 180 MPa 초고강도콘크리트의 역학적특성평가)

  • Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Tae-Gyu;Lee, Seong-Hun;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.613-620
    • /
    • 2013
  • Concrete has been recognized as a material which is resistant to high temperatures, but chemicophysical property of concrete is changed by the high temperature. So, mechanical properties of concrete may be reduced. Because of this, standards and researches on the degradation of the mechanical properties of concrete at high temperatures have been presented. However, research data about the state that considering the loading condition and high-strength concrete is not much. Therefore, this study evaluated the high-temperature properties of high-strength concrete by loading condition and elevated temperature. The stress-strain, strain at peak stress, compressive strength, elastic modulus, thermal strain and the transient creep are evaluated under the non-loading and $0.25f_{cu}$ loading conditions on high strength concrete of W/B 12.5%, 14.5% and 20%. Result of the experiment, decrease in compressive strength due to high temperature becomes larger as the compressive strength increases, and residual rate of elastic modulus and compressive strength is high by the shrinkage caused by loading and thermal expansion due to high temperature are offset from each other, at a temperature above $500^{\circ}C$.

Evaluation for mechanical properties of high strength concrete by stressed test and stressed residual strength test - part 2 strain properties - (설계하중 사전재하 및 잔존강도 시험방법에 따른 고강도콘크리트의 고온특성 평가 - 제2보 변형특성을 중심으로 -)

  • Kim, Young-Sun;Lee, Tae-Gyu;Lee, Dae-Hui;Lee, Seung-Hoon;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.761-764
    • /
    • 2008
  • The present study is aimed to study the effect of elevated temperatures ranging from 20 to $700^{\circ}C$ on the strain properties of high-strength concrete of 40, 60, 80MPa grade. In this study, the types of test were the stressed test and stressed residual test that the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating and when target temperature is reached, the specimens are loaded to failure. Or specimens are loaded to failure after 24hour cooling time. tests were conducted at various temperatures ($20{\sim}700^{\circ}C$) for concretes made with W/B ratios 46%, 32% and 25%. Test results showed that the relative values of elastic modulus decreased with increasing compressive strength grade of specimen and the axial strain at peak stress were influenced by the load before heating. thermal strain of concrete at high temperature was affected by the preload as well as the compressive strength.

  • PDF

Study on The Heat Transfer and Mechanical Modeling of Fiber-Mixed High Strength Concrete (섬유혼입 고강도 콘크리트의 열전달 및 역학적 거동 해석모델에 대한 연구)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.45-52
    • /
    • 2011
  • To improve fire-resistance of a high strength concrete against spalling under elevated temperature, fibers can be mixed to provide flow paths of evaporated water to the surface of concrete when heated. In this study, the experiment of a column under fire and mechanical loads is conducted and the material model for predicting temperature of reinforcement steel bar and mechanical behavior of fiber-mixed high strength concrete is suggested. The material model in previous studies is modified by incorporating physical behavior of internal concrete and thermal characteristics of concrete at the elevated temperature. Thermo-mechanical analysis of the fiber-mixed high strength concrete column is conducted using the calibrated material model. The performance of the proposed material model is confirmed by comparing thermo-mechanical analysis results with the experiment of a column under fire and mechanical loads.

High Temperature Properties of Alumino Silicate Fire Protection Materials Using Fly ash (플라이애쉬 활용 Alumino silicate계 내화마감재의 고온특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Park, Nam-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.689-692
    • /
    • 2008
  • HSC(High Strength Concrete) have superior properties well as improvement in durability compared with normal strength concrete. In spite of durability of HSC, explosive spalling of concrete is serious problem in structure safety. Therefore, Solving methods are required to control the explosive spalling. The properties of concrete are affected by changes of temperatures. Compressive strength and elasticity modulus were degraded depending on a rise of temperatures. Also, change in microstructure and dehydration of concrete subjected to high temperatures. This paper is concerned with change in microstructure and dehydration of the alumino silicate fire protection materials at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of SEM, TG-DSC and XRD. From the experimental test results, influence of high temperatures on microstructure of alumino-silicate fire protection material was identified, including chemical dehydration of C-S-H and CH. The chemical dehydration of CH under various temperatures from to 450 to 600$^{\circ}$C has been measured using the TG-DSC. However, developed alumino silicate fire protection materials showed good stability in high Temperatures. Thus, the results indicate that it is possible to fireproof panels, fire protection of materials.

  • PDF

Strength Properties of High-Strength Concrete Exposed at High Temperature (고온을 받은 고강도 콘크리트의 강도특성)

  • 윤현도;김규용;한병찬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.698-707
    • /
    • 2002
  • A review is presented of experimental studies on the strength performance of concrete exposed at short-term and rapid heating as in a fire and after cooling. Emphasis is placed on concretes with high original compressive strengths, that is, high-strength concrete(HSC). The compressive strength-temperature relationships from the reviewed test programs are distinguished by the test methods used in obtaining the data(unstressed, unstressed residual strength, and stressed tests) and by the aggregate types(normal or lightweight), The compressive strength properties of HSC vary differently with temperature than those of NSC. HSC have higher rates of strength loss than lower strength concrete in the temperature range of between 20$^{\circ}C$ to about 400$^{\circ}C$. These difference become less significant at temperatures above 400$^{\circ}C$ compressive strengths of HSC at 800$^{\circ}C$ decrease to about 30 % of the original room temperature strength. A comparison of lest results with current code provisions on the effects of elevated temperatures on concrete compressive strength and elastic modulus shows that the CEN Eurocodes and the CEB provisions are unconservative.