• Title/Summary/Keyword: 고온내성

Search Result 75, Processing Time 0.021 seconds

Evaluation on Early-maturing Korean Japonica Cultivars for High-temperature Tolerance during Grain Filling Stage (국내 육성 조생종 벼 품종들에 대한 등숙기 고온내성 평가)

  • Cho, Seong-Woo;Jeung, Ji-Ung;Kang, Kyung-Ho;Kim, Hyun-Soon;Kim, Bo-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.2
    • /
    • pp.146-152
    • /
    • 2015
  • Early-maturing Korean Japonica cultivars and Jungmo1024 were used as plant materials to evaluate hightemperature tolerance during grain filling stage. National Institute of Crop Science (NICS) in Korea developed Jungmo1024, a mutant line from Namil (wild type) treated by using sodium azide (SA) as mutagen. To evaluate high-temperature tolerance, all cultivars were exposed to high-temperature (day $31.5{\pm}2.5^{\circ}C$/ night $27.5{\pm}1.3^{\circ}C$) and ordinary temperature (day $27.5{\pm}1.8^{\circ}C$/ night $24.7{\pm}1.6^{\circ}C$) during grain filling stage. In these conditions, we performed compared evaluation of grain shape such as length and width and grain quality by using a 1625 Cervitec grain inspector. High-temperature during grain filling stage caused decrease of grain shape. In grain shape such as length and width, the decrease rate of width (average 6.3%) was higher than the decrease rate of length (average 1.3%). Hence, high-temperature affected width of grain than length of grain. In addition, high-temperature showed a decided difference in rate of head rice between ordinary temperature (average 76.3%) and high-temperature (average 13.3%).As a result, Taebong, Ungwang, Manan, and Jungmo1024 seemed relatively a decent high-temperature tolerance than other cultivars. Especially, Jungmo1024 seemed remarkable rate of head rice (average $34.4{\pm}6.2%$) than other cultivars under high-temperature. It is considered that a genetic trait of Jungmo1024 can be useful to improve breeding for high-temperature tolerance.

Effect of NaCl Adaptation on the Thermotolerance and Alcohol Fermentation in Saccharomyces cerevisiae KNU5377. (Saccharomyces cerevisiae KNU5377의 NaCl에 대한 적응이 고온내성과 알코올발효에 미치는 영향)

  • 백상규;윤혜선;사금희;김일섭;이인구;박희동;유춘발;진익렬
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.63-68
    • /
    • 2003
  • Saccharomyces cerevisiae KNU5377 is a constitutively thermotolerant, fermentative strain at high temperatures over 4$0^{\circ}C$. The exposure to 0.5 M NaCl caused S. cerevisiae KNU5377 to be lost its constitutive thermotolerance. Furthermore, the NaCl adaptation beyond 0.3 M during the overnight culture forced the strain-specific fermentation ability of S. cerevisiae KNU5377 to be disappeared. However, these phenomena did not occur in the reference, Saccharomyces cerevisiae ATCC24858. As a result, this adaptation led both strains to show the closely similar thermotolerance level and alcohol fermentation ability, implying the NaCl adaptation eliminated its strain-specific characteristics of S. cerevisiae KNU5377 Therefore it indicated that the superior intrinsic characteristics of S. cerevisiae KNU5377 must be related to the NaCl adaptation. On the other hand, the heat adaptation elevated alcohol productivity for both strains, but surprisingly did it for KNU5377 at the rate of two times higher than the reference's one; this suggests that KNU5377 possesses more efficient system enough to cause the difference. Consequently, these characteristics of S. cerevisiae KNU5377 must be interesting targets for further study to understand on how KNU5377 could acquire the constitutive thermotolerance and the outstanding fermentative capacity at high temperatures.

Production of Transgenic Orchardgrass Overexpressing a Thermotolerant Gene, DgP23 (내열성 유전자 DgP23을 도입한 형질전환 오차드그라스의 생산)

  • Kim Ki-Yong;Jang Yo-Soon;Park Geun Je;Choi Gi Jun;Seong Byung Ryul;Seo Sung;Cha Joon-Yung;Son Daeyong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.4
    • /
    • pp.267-274
    • /
    • 2005
  • To develop transgenic orchardgrass (Dactylis glomerata L.) resistant to high temperature, a thermptolerance gene, DgP23, was introduced into orchardgrass using Agrobacterium - mediated transformation method. PCR and Southern blot analyses using genomic DNA showed specific DNA band on agarose gel and hybridization signal on X- ray film in transgenic orchardgrass harboring the recombinant DgP23 gene, but not in the wild type and empty vector control plants. RT-PCR and Southern blot analyses using total RNA also showed specific DNA band and hybridization signal. Transgenic orchardgrass did not showed ny morphological aberration both in the green house and field cultivation. Thermotolerance of transgenic plants was not detected in laboratory test. but may detected in field test.

Constitutive Expression of Small Heat Shock Protein Increases Thermotolerance in Transgenic Plant (저 분자량 Heat Shock Protein의 항상적 발현에 의한 형질전판 식물체의 고온내성 증가)

  • 이병현
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • To investigate the function of chloroplast small HSP, transgenic tobacco plants (Nicotiana tabacum L. cv. Samsun) that constitutively overexpress the chloroplast small HSP (NtHSP21) from N. tabacum cv. Petit Havana SR1 were generated. Five homozygous lines of transformants showing different constitutive expression levels of the NtHSP21 were selected. To determine whether constitutive overexpression of NtHSP21 protein affects thermotolerance, wild-type and transformants were grown in Petri dishes, heat-stressed at 52$^{\circ}C$ for 45 min, and then incubated in normal growth condition. When heat-stressed wild-type plantlets were incubated at $25^{\circ}C$, leaf color gradually became white and all trio plantlets finally died within a week. As for the transformants, however, more than 70% of them remained green and survived under the conditions in which all the wild-type plants were dying. It was also found that the levels of NtHSP21 were correlated with the degree of thermotolerance. These results suggest that the NtHSP21 protein in transformants is responsible for the increase in thermotolerance.

  • PDF

Overexpression of NtHSP70-1 Protects Chlorophyll from High Temperature in Plants (NtHSP70-1에 의한 클로로필의 고온 내성 효과)

  • Cho, Eun-Kyung;Hong, Choo-Bong
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.304-310
    • /
    • 2008
  • Heat shock protein 70 (HSP70) is known as molecular chaperone, the fundamental protein participating in various processes, from nascent protein synthesis to protection of proteins during abiotic stresses and developmental programs. However, their biological functions in plants are not yet well known. Here, NtHSP70-1 (AY372069), HSP70 of Nicotiana tabacum induced by heat stress was investigated. To analyze the protective role of NtHSP70-1, transgenic tobacco plants, which constitutively overexpressed NtHSP70-1 as well as contained either the vector alone or having NtHSP70-1 in the antisense orientation, were constructed. The altered NtHSP70-1 levels in plants were confirmed by western blotting and transgenic sense lines exhibited tolerance to heat stress. Seedlings with the constitutively expressed NtHSP70-1 grew as green or healthy plants after heat stress. In contrast, transgenic vector or antisense lines exhibited yellowing of leaves or some delay in growth, which finally led to death. Evaluation of chlorophyll contents of heat-shocked transgenic tobacco seedlings indicated that NtHSP70-1 contributes to thermotolerance by preventing chlorophyll synthesis in plants.

Effect of Thermophilic Ammonium Tolerant Bacteria on Malodors Emission of Composting of Pig Manure (돈분 퇴비화 과정중 악취물질에 대한 고온성 암모니움 내성균 접종 효과)

  • Seo, Myung-Chul;Kuroda, Kazutaka;Hanajima, Dai;Haga, Kiyonori
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • In order to investigate microbiological control of malodors, particularly including ammonia, the effect of three thermophilic ammonium tolerant bacteria strains. TAT112. TAT117 and TAT119, were tested during composting of pig manure in the laboratory scale composters. The total weight, volatile solids and BOD of the pig manure compost were decreased during composting process in all treatments. The temperature in all treatments rose in first 3 days dramatically, but that in control without inoculation reached its maximum most lately among the treatments. The nitrogen content of drain water accumulated inside and outside composter, and trapped in 6N $H_2SO_4$ was lower in TAT112 inoculated composter than in control. However, it was not lower in the treatment of TAT117 and TAT119 inoculated. Ammonia concentration in the exhaust gas monitored everyday during composting also demonstrated that it was lowest at TAT112 inoculated among all treatments. It was appeared to have an effect on reducing ammonia emission at the treatment of TAT112 inoculated than the control.

  • PDF