Browse > Article
http://dx.doi.org/10.7740/kjcs.2015.60.2.146

Evaluation on Early-maturing Korean Japonica Cultivars for High-temperature Tolerance during Grain Filling Stage  

Cho, Seong-Woo (Crop Breeding Division, NICS, RDA)
Jeung, Ji-Ung (Crop Breeding Division, NICS, RDA)
Kang, Kyung-Ho (Crop Breeding Division, NICS, RDA)
Kim, Hyun-Soon (Crop Breeding Division, NICS, RDA)
Kim, Bo-Kyeong (Crop Breeding Division, NICS, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.60, no.2, 2015 , pp. 146-152 More about this Journal
Abstract
Early-maturing Korean Japonica cultivars and Jungmo1024 were used as plant materials to evaluate hightemperature tolerance during grain filling stage. National Institute of Crop Science (NICS) in Korea developed Jungmo1024, a mutant line from Namil (wild type) treated by using sodium azide (SA) as mutagen. To evaluate high-temperature tolerance, all cultivars were exposed to high-temperature (day $31.5{\pm}2.5^{\circ}C$/ night $27.5{\pm}1.3^{\circ}C$) and ordinary temperature (day $27.5{\pm}1.8^{\circ}C$/ night $24.7{\pm}1.6^{\circ}C$) during grain filling stage. In these conditions, we performed compared evaluation of grain shape such as length and width and grain quality by using a 1625 Cervitec grain inspector. High-temperature during grain filling stage caused decrease of grain shape. In grain shape such as length and width, the decrease rate of width (average 6.3%) was higher than the decrease rate of length (average 1.3%). Hence, high-temperature affected width of grain than length of grain. In addition, high-temperature showed a decided difference in rate of head rice between ordinary temperature (average 76.3%) and high-temperature (average 13.3%).As a result, Taebong, Ungwang, Manan, and Jungmo1024 seemed relatively a decent high-temperature tolerance than other cultivars. Especially, Jungmo1024 seemed remarkable rate of head rice (average $34.4{\pm}6.2%$) than other cultivars under high-temperature. It is considered that a genetic trait of Jungmo1024 can be useful to improve breeding for high-temperature tolerance.
Keywords
high-temperature tolerance; early-maturing; mutant; sodium azide; rice;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Sakai, M., M. Okamoto, K. Tamura, R. Kaji, R. Mizobuchi, H. Hirabayashi, S. Fukaura, M. Nishimura, and T. Yagi. 2007. "Nikomaru", a new rice variety with excellent palatability and grain appearance developed for warm region of Japan. Breed. Res. 9 : 67-73.
2 She, K. C., M. Yaeshima, T. Koumoto, M. Ohnuma, T. Hiromasa, M. Hirai, T. Matsunaga, R. Tashiro, T. Sasaki, H. Kusano, and H. Shimada. 2012. High-temperature stress susceptibility of representative japonica rice cultivars derived from Norin-22: Inadequate ATP supply during seed development may lead to severe damage. Plant Biotechnol. 29 : 465-471.   DOI
3 Shimono, H. and A. Ishii. 2012. Poor grain growth in rice under high temperatures affected by water temperature during vegetative stage. J. Agric. Meteorol. 68 : 205-214.   DOI
4 Shin, D. H., H. R. Kim, and Y. H. You. 2012. Effects of elevated $CO_2$ concentration and increased temperature on the change of the phonological and reproductive characteristics of Phytolocca insularis, a Korea endemic plant. J. of Wetlands Res. 14 : 1-9.
5 Shin, Y. S., C. S. Park, Y. W. Seo, and J. U. Jeung. 2009. Characteristics of endosperm starch of the rice mutant lines induced by sodium azide. Korean J. Breed. Sci. 41 : 84-91.
6 Shirato, Y., A. Fukushima, N. Ogata, T. Ohara, K. Kawashima, H. Harada, T. Yamada, H. Furuita, and O. Toshio. 2007. Impact of global warming on agriculture, forestry and fisheries and possible countermeasures in Japan. in: Research and Development in Agriculture, Forestry and Fisheries No. 23, ed. Agriculture, Forestry and Fisheries Research Council, MAFF Japan. Ministry of Agriculture, Forestry and Fisheries (MAFF), Japan, pp. 3-8.
7 Tabata, M., H. Hirabayashi, Y. Takeuchi, I. Ando, Y. Iida, and R. Ohsawa. 2007. Mapping of quantitative trait loci for the occurrence of white-back kernels associated with high temperatures during the ripening period of rice (Oryza sativa L.). Breed. Sci. 57 : 47-52.   DOI
8 Tabkhkar, N., B. Rabiei, and A. Sabouri. 2012. Genetic diversity of rice cultivars by microsatellite markers tightly linked to cooking and eating quality. Australian J. Crop Sci. 6 : 980-985.
9 Yamakawa, H., T. Hirose, M. Kuroda, and T. Yamaguchi. 2007. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol. 144 : 258-277.   DOI
10 Yonemaru, J. I. and S. Morita. 2012. Image analysis of grain shape to evaluate the effects of high temperatures on grain filling of rice, Oryza Sativa L. Field Crops Res. 137 : 268-271.   DOI
11 Hasanuzzaman, M., K. Nahar, M. M. Alam, R. Roychowdhury, and M. Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14 : 9643-9684.   DOI
12 Chen, Y., M. Wang, and P. B. F. Ouwerkerk. 2012. Molecular and environmental factors determining grain quality in rice. Food and Energy Security. 1 : 111-132.   DOI
13 Endo, M., T. Tsuchiya, K. Hamada, S. Kawamura, K. Yano, M. Ohshima, A. Higashitani, M. Watanabe, and M. Kawagishi- Kobayashi. 2009. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol. 50 : 1911-1922.   DOI
14 Hakata, M., M. Kuroda, T. Miyashita, T. Yamaguchi, M. Kojima, H. Sakakibara, T. Mitsui, and H. Yanakawa. 2012. Suppression of $\alpha$-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnol. J. 10 : 1110-1117.   DOI
15 ICPP. 2007. Climate Change 2007: The Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York. NY, USA, 996 pp.
16 Kobayashi, A., B. Genliang, Y. Shenghai, and K. Tomira. 2007. Detection of Quantitative Trait Loci for white-back and basal-white kernels under high temperature stress in japonica rice varieties. Breed. Sci. 57 : 107-116.   DOI
17 Jagadish, S. V. K., P. Q. Craufurd, and T. R. Wheeler. 2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 58 : 1627-1635.   DOI
18 Kim, H. Y., K. H. Kang, H. G. Hwang, H. P. Moon, and I. S. Choi. 2003. A semi-early maturing, high yielding and processing japonica rice cultivar "Namilbyeo". Treat. of Crop Res. 4 : 141-148.
19 Kim, S. O., U. Chung, S. H. Kim, I. M. Choi, and J. I. Yun. 2009. The suitable region and site for 'Fuji' apple under the projected climate in South Korea. Korean J. of Agric. and For. Meteorol. 11 : 162-173.   DOI
20 Lee, C. K., K. S. Kwak, J. H. Kim, J. Y. Son, and W. H. Yang. 2011. Impact of climate change and follow-up cropping season shift on growing period and temperature in different rice maturity types. Korean J. Crop Sci. 56 : 233-243.   DOI   ScienceOn
21 Morita, S., J. I. Yonemaru, and J. I. Takanashi. 2005. Grain growth and endosperm cell size under high night temperature in rice (Oryza sativa L.). Ann. of Bot. 95 : 695-701.   DOI
22 Morita, S. and H. Nakano. 2011. Nonstructural carbohydrate content in the stem at full heading contributes to high performance of ripening in heat tolerant rice cultivar Nikomaru. Crop Sci. 51 : 818-828.   DOI
23 Phan, T. T. T., Y. Ishibashi, M. Miyazaki, H. T. Tran, K. Okamura, S. Tanaka, J. Nakamura, T. Yuasa, and M. Iwaya-Inoue. 2013. High temperature-induced repression of the rice sucrose transporter (OsSUT1) and starch synthesis-related genes in sink and source organs at milky ripening stage causes chalky grains. J. of Agron. and Crop Sci. 199 : 178-188.   DOI