DOI QR코드

DOI QR Code

Evaluation on Early-maturing Korean Japonica Cultivars for High-temperature Tolerance during Grain Filling Stage

국내 육성 조생종 벼 품종들에 대한 등숙기 고온내성 평가

  • 조성우 (국립식량과학원 작물육종과) ;
  • 정지웅 (국립식량과학원 작물육종과) ;
  • 강경호 (국립식량과학원 작물육종과) ;
  • 김현순 (국립식량과학원 작물육종과) ;
  • 김보경 (국립식량과학원 작물육종과)
  • Received : 2014.11.10
  • Accepted : 2015.04.26
  • Published : 2015.06.30

Abstract

Early-maturing Korean Japonica cultivars and Jungmo1024 were used as plant materials to evaluate hightemperature tolerance during grain filling stage. National Institute of Crop Science (NICS) in Korea developed Jungmo1024, a mutant line from Namil (wild type) treated by using sodium azide (SA) as mutagen. To evaluate high-temperature tolerance, all cultivars were exposed to high-temperature (day $31.5{\pm}2.5^{\circ}C$/ night $27.5{\pm}1.3^{\circ}C$) and ordinary temperature (day $27.5{\pm}1.8^{\circ}C$/ night $24.7{\pm}1.6^{\circ}C$) during grain filling stage. In these conditions, we performed compared evaluation of grain shape such as length and width and grain quality by using a 1625 Cervitec grain inspector. High-temperature during grain filling stage caused decrease of grain shape. In grain shape such as length and width, the decrease rate of width (average 6.3%) was higher than the decrease rate of length (average 1.3%). Hence, high-temperature affected width of grain than length of grain. In addition, high-temperature showed a decided difference in rate of head rice between ordinary temperature (average 76.3%) and high-temperature (average 13.3%).As a result, Taebong, Ungwang, Manan, and Jungmo1024 seemed relatively a decent high-temperature tolerance than other cultivars. Especially, Jungmo1024 seemed remarkable rate of head rice (average $34.4{\pm}6.2%$) than other cultivars under high-temperature. It is considered that a genetic trait of Jungmo1024 can be useful to improve breeding for high-temperature tolerance.

본 연구는 국내 조생종 벼 품종들과 농촌진흥청 국립식량과학원에서 육성된 자포니카(Oryza sativa L. ssp. Japonica)의 조생 다수성 품종인 남일 돌연변이 계통인 중모1024의 등숙기 고온내성을 비교 평가하여 등숙기 고온내성의 기초자료를 얻고자 수행하였다. 본 연구를 통하여 국내 조생종벼 품종들 중 대봉, 운광, 및 만안과 돌연변이 계통인 중모 1024가 고온에서 상대적으로 양호한 고온내성을 가지고 있는 것으로 평가되었으며. 특히 중모1024는 다른 공시품종들에 비하여 상당히 양호한 고온내성을 가진 것으로 평가되었다. 본 연구의 주요 결과는 등숙기간 동안 고온에 의하여 현미의 길이와 너비가 감소하였으며, 현미 너비의 감소율이 현미 길이의 감소율에 비하여 평균 4배 이상 높았다. 이러한 결과로 보아, 등숙기간 동안 고온에 의하여 현미의 길이보다는 너비가 더 많은 영향을 받는다고 사료된다. 등숙기간 동안 고온에 의해 가장 문제가 되는 완전미율과 미숙립율을 공시품종들간 비교 평가한 결과, 상대적으로 중모 1024, 태봉, 운광 및 만안이 고온에서 높은 현미완전미율을 보였으며, 상대적으로 적온에서 낮은 현미완전미율을 보인 품종들이 상대적으로 고온에 의한 현미완전미율 감소율이 적온에서 높은 현미완전미율을 보인 품종들에 비해 낮았다. 또한, 다른 공시품종들에 비하여 고온내성이 양호한 중모 1024는 고온에서도 좋은 쌀 외관품위와 안정적 수확성 향상을 위한 육종모재로서 유용형질을 교배를 통해 고품질 벼의 보완을 위해 이전할 수 있는 것이 용이할 것으로 사료된다.

Keywords

References

  1. Chen, Y., M. Wang, and P. B. F. Ouwerkerk. 2012. Molecular and environmental factors determining grain quality in rice. Food and Energy Security. 1 : 111-132. https://doi.org/10.1002/fes3.11
  2. Endo, M., T. Tsuchiya, K. Hamada, S. Kawamura, K. Yano, M. Ohshima, A. Higashitani, M. Watanabe, and M. Kawagishi- Kobayashi. 2009. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol. 50 : 1911-1922. https://doi.org/10.1093/pcp/pcp135
  3. Hakata, M., M. Kuroda, T. Miyashita, T. Yamaguchi, M. Kojima, H. Sakakibara, T. Mitsui, and H. Yanakawa. 2012. Suppression of $\alpha$-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnol. J. 10 : 1110-1117. https://doi.org/10.1111/j.1467-7652.2012.00741.x
  4. Hasanuzzaman, M., K. Nahar, M. M. Alam, R. Roychowdhury, and M. Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14 : 9643-9684. https://doi.org/10.3390/ijms14059643
  5. ICPP. 2007. Climate Change 2007: The Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York. NY, USA, 996 pp.
  6. Jagadish, S. V. K., P. Q. Craufurd, and T. R. Wheeler. 2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 58 : 1627-1635. https://doi.org/10.1093/jxb/erm003
  7. Kim, H. Y., K. H. Kang, H. G. Hwang, H. P. Moon, and I. S. Choi. 2003. A semi-early maturing, high yielding and processing japonica rice cultivar "Namilbyeo". Treat. of Crop Res. 4 : 141-148.
  8. Kim, S. O., U. Chung, S. H. Kim, I. M. Choi, and J. I. Yun. 2009. The suitable region and site for 'Fuji' apple under the projected climate in South Korea. Korean J. of Agric. and For. Meteorol. 11 : 162-173. https://doi.org/10.5532/KJAFM.2009.11.4.162
  9. Kobayashi, A., B. Genliang, Y. Shenghai, and K. Tomira. 2007. Detection of Quantitative Trait Loci for white-back and basal-white kernels under high temperature stress in japonica rice varieties. Breed. Sci. 57 : 107-116. https://doi.org/10.1270/jsbbs.57.107
  10. Lee, C. K., K. S. Kwak, J. H. Kim, J. Y. Son, and W. H. Yang. 2011. Impact of climate change and follow-up cropping season shift on growing period and temperature in different rice maturity types. Korean J. Crop Sci. 56 : 233-243. https://doi.org/10.7740/kjcs.2011.56.3.233
  11. Morita, S., J. I. Yonemaru, and J. I. Takanashi. 2005. Grain growth and endosperm cell size under high night temperature in rice (Oryza sativa L.). Ann. of Bot. 95 : 695-701. https://doi.org/10.1093/aob/mci071
  12. Morita, S. and H. Nakano. 2011. Nonstructural carbohydrate content in the stem at full heading contributes to high performance of ripening in heat tolerant rice cultivar Nikomaru. Crop Sci. 51 : 818-828. https://doi.org/10.2135/cropsci2010.06.0373
  13. Phan, T. T. T., Y. Ishibashi, M. Miyazaki, H. T. Tran, K. Okamura, S. Tanaka, J. Nakamura, T. Yuasa, and M. Iwaya-Inoue. 2013. High temperature-induced repression of the rice sucrose transporter (OsSUT1) and starch synthesis-related genes in sink and source organs at milky ripening stage causes chalky grains. J. of Agron. and Crop Sci. 199 : 178-188. https://doi.org/10.1111/jac.12006
  14. Sakai, M., M. Okamoto, K. Tamura, R. Kaji, R. Mizobuchi, H. Hirabayashi, S. Fukaura, M. Nishimura, and T. Yagi. 2007. "Nikomaru", a new rice variety with excellent palatability and grain appearance developed for warm region of Japan. Breed. Res. 9 : 67-73.
  15. She, K. C., M. Yaeshima, T. Koumoto, M. Ohnuma, T. Hiromasa, M. Hirai, T. Matsunaga, R. Tashiro, T. Sasaki, H. Kusano, and H. Shimada. 2012. High-temperature stress susceptibility of representative japonica rice cultivars derived from Norin-22: Inadequate ATP supply during seed development may lead to severe damage. Plant Biotechnol. 29 : 465-471. https://doi.org/10.5511/plantbiotechnology.12.1015a
  16. Shimono, H. and A. Ishii. 2012. Poor grain growth in rice under high temperatures affected by water temperature during vegetative stage. J. Agric. Meteorol. 68 : 205-214. https://doi.org/10.2480/agrmet.68.4.4
  17. Shin, D. H., H. R. Kim, and Y. H. You. 2012. Effects of elevated $CO_2$ concentration and increased temperature on the change of the phonological and reproductive characteristics of Phytolocca insularis, a Korea endemic plant. J. of Wetlands Res. 14 : 1-9.
  18. Shin, Y. S., C. S. Park, Y. W. Seo, and J. U. Jeung. 2009. Characteristics of endosperm starch of the rice mutant lines induced by sodium azide. Korean J. Breed. Sci. 41 : 84-91.
  19. Shirato, Y., A. Fukushima, N. Ogata, T. Ohara, K. Kawashima, H. Harada, T. Yamada, H. Furuita, and O. Toshio. 2007. Impact of global warming on agriculture, forestry and fisheries and possible countermeasures in Japan. in: Research and Development in Agriculture, Forestry and Fisheries No. 23, ed. Agriculture, Forestry and Fisheries Research Council, MAFF Japan. Ministry of Agriculture, Forestry and Fisheries (MAFF), Japan, pp. 3-8.
  20. Tabata, M., H. Hirabayashi, Y. Takeuchi, I. Ando, Y. Iida, and R. Ohsawa. 2007. Mapping of quantitative trait loci for the occurrence of white-back kernels associated with high temperatures during the ripening period of rice (Oryza sativa L.). Breed. Sci. 57 : 47-52. https://doi.org/10.1270/jsbbs.57.47
  21. Tabkhkar, N., B. Rabiei, and A. Sabouri. 2012. Genetic diversity of rice cultivars by microsatellite markers tightly linked to cooking and eating quality. Australian J. Crop Sci. 6 : 980-985.
  22. Yamakawa, H., T. Hirose, M. Kuroda, and T. Yamaguchi. 2007. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol. 144 : 258-277. https://doi.org/10.1104/pp.107.098665
  23. Yonemaru, J. I. and S. Morita. 2012. Image analysis of grain shape to evaluate the effects of high temperatures on grain filling of rice, Oryza Sativa L. Field Crops Res. 137 : 268-271. https://doi.org/10.1016/j.fcr.2012.08.003

Cited by

  1. Multiple Disease Resistant Early Maturing Rice Cultivar 'Joil' with High Grain Quality Adaptable to Early Transplanting Cultivation in the Southern Plain Area vol.50, pp.3, 2015, https://doi.org/10.9787/kjbs.2018.50.3.280
  2. Characterization of Quality-Related Traits and Pasting Properties of Early Maturing Rice Varieties by Cultivation Times in the Honam Plain, Korea vol.53, pp.1, 2015, https://doi.org/10.9787/kjbs.2021.53.1.1