• Title/Summary/Keyword: 고속도로 이력자료

Search Result 22, Processing Time 0.026 seconds

A Study on the Construction of Historical Profiles for Freeway Travel Time Forecasting (고속도로 통행시간 예측을 위한 과거 통행시간 이력자료 구축에 관한 연구(지점 검지기를 중심으로))

  • Kim, Dong-Ho;Rho, Jeong-Hyun;Park, Dong-Joo;Park, Jee-Hyung;Kim, Han-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.131-141
    • /
    • 2008
  • The objective of this study is to propose methods for determining optimal representative value and the optimal size of historical data for reliable travel time forecasting. We selected values with the smallest mean of forecasting errors as the optimal representative value of travel time pattern data. The optimal size of historical data used was determined using the CVMSE(Cross Validated Mean Square Error) method. According to the results of applying the methods to point vehicle detection data of Korea Highway Corporation, the optimal representative value were analyzed to be median. Second, it was analyzed that 60 days' data is the optimal size of historical data usedfor travel time forecasting.

Investigation of Service Item for Archived VDS Data User Services: Focused on Expressway (차량검지기 이력자료 이용자서비스 도입을 위한 서비스 아이템 선정(고속도로를 중심으로))

  • Kim, Han-Soo;Baek, Seung-Kirl;NamKoong, Seong;Shin, Seung-Jin;Park, Dong-Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.1-14
    • /
    • 2007
  • The purpose of this research is to investigate service item to develop archived VDS(Vehicle Detecting System) data user services. Through the review of related studies and literature and investigation of the current application status of the vehicle detector data, the service item from the historical detector data were identified. The relative importance of the identified service item was measured based on the application purpose, usage and frequency of application.

  • PDF

User Interface of Data Processing, Design and Construction Techniques of Traffic Database Supporting Archived data (교통정보 이력자료 분석을 위한 통합 교통 데이터베이스의 설계 및 구축과 자료처리 이용자 인터페이스)

  • Lee, Yoon-Kyung;Lee, Min-Soo;NamGung, Sung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.55-59
    • /
    • 2008
  • 분산되어 있는 여러 운영계 시스템에서 대용량의 교통자료를 가져와 교통정보 이력자료를 분석할 수 있는 단일 통합 교통 데이터베이스를 구축한다. 품질 평가, 오류 판단, 결측보정과 평활화 등의 자료처리 과정을 거친 교통자료는 자료의 신뢰도를 판단하고 활용도를 높일 수 있게 해주며 이용자에게 고속도로 통행료 수납자료, 고속도로 전자통행료 수납자료, 차량검지장치자료, 도로전광표지자료, 돌발상황자료, 기상자료, 차량번호인식장치자료 등에 대한 검색 및 자료 처리 기능을 제공한다.

  • PDF

A Study on the Prediction of Traffic Volume on Highway by the Reference Day of Archived Data (이력자료 참조일수에 따른 고속도로 교통량 예측에 관한 연구)

  • Lee, So-Yeon;Jung, So-Yeon
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.230-237
    • /
    • 2018
  • Purpose: In Korea, traffic information is collected in real time as part of Intelligent Transportation System to enhance efficiency of road operation. However, traffic information based on real-time data is different from the traffic situation the driver will experience. Method: In this study, forecasts were made for future highway traffic by day and time period by adjusting the Archived data reference days to 3, 5 and 10 days based on existing traffic Archived data. Results: Fewer days of reference in the past showed smaller errors. The prediction of Monday based on five past histories showed greater errors than the 10 past histories, as the traffic flow on the sixth Monday of 2016 was somewhat different from the usual holiday. Conclution: This study shows that less of the reference days of the past history when estimating traffic volume, the more accurate the data of the traffic history of the event can be used on special days.

Short-Term Prediction of Travel Time Using DSRC on Highway (DSRC 자료를 이용한 고속도로 단기 통행시간 예측)

  • Kim, Hyungjoo;Jang, Kitae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2465-2471
    • /
    • 2013
  • This paper develops a travel time prediction algorithm that can be used for real-time application. The algorithm searches for the most similar pattern in historical travel time database as soon as a series of real-time data become available. Artificial neural network approach is then taken to forecast travel time in the near future. To examine the performance of this algorithm, travel time data from Gyungbu Highway were obtained and the algorithm is applied. The evaluation shows that the algorithm could predict travel time within 4% error range if comparable patterns are available in the historical travel time database. This paper documents the detailed algorithm and validation procedure, thereby furnishing a key to generating future travel time information.

Identification of Factors Affecting the Crash Severity and Safety Countermeasures Toward Safer Work Zone Traffic Management (공사구간 교통관리특성을 고려한 고속도로 교통사고 심각도 영향요인 분석 및 안전성 증진 방안)

  • YOON, Seok Min;OH, Cheol;PARK, Hyun Jin;CHUNG, Bong Jo
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.4
    • /
    • pp.354-372
    • /
    • 2016
  • This study identified factors affecting the crash severity at freeway work zones. A nice feature of this study was to take into account the characteristics of work zone traffic management in analyzing traffic safety concerns. In addition to crash records, vehicle detection systems (VDS) data and work zone historical data were used for establishing a dataset to be used for statistical analyses based on an ordered probit model. A total of six safety improvement strategies for freeway work zones, including traffic merging method, guidance information provision, speed management, warning information systems, traffic safety facility, and monitoring of effectiveness for countermeasures, were also proposed.

Improvement of A Preprocessing of Archived Traffic Data Collected by Expressway Vehicle Detection System (고속도로 차량검지기 이력자료 활용을 위한 전처리과정 개선)

  • Lee, Hwan-Pil;NamKoong, Seong;Kim, Soo-Hee;Kim, Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.15-27
    • /
    • 2013
  • While the vehicle detector is collected from a variety of information was mainly used as a real-time data. Recently scheme of application for archived traffic data has become increasingly important. In this background, this research were conducted on the improvement of the preprocessing for archived traffic data application. The purpose of improving specific preprocessing was reflect transportation phenomena by traffic data. As evaluation result, improvement preprocessing was close to the actual value than exist preprocessing.

Multiple Period Forecasting of Motorway Traffic Volumes by Using Big Historical Data (대용량 이력자료를 활용한 다중시간대 고속도로 교통량 예측)

  • Chang, Hyun-ho;Yoon, Byoung-jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.73-80
    • /
    • 2018
  • In motorway traffic flow control, the conventional way based on real-time response has been changed into advanced way based on proactive response. Future traffic conditions over multiple time intervals are crucial input data for advanced motorway traffic flow control. It is necessary to overcome the uncertainty of the future state in order for forecasting multiple-period traffic volumes, as the number of uncertainty concurrently increase when the forecasting horizon expands. In this vein, multi-interval forecasting of traffic volumes requires a viable approach to conquer future uncertainties successfully. In this paper, a forecasting model is proposed which effectively addresses the uncertainties of future state based on the behaviors of temporal evolution of traffic volume states that intrinsically exits in the big past data. The model selects the past states from the big past data based on the state evolution of current traffic volumes, and then the selected past states are employed for estimating future states. The model was also designed to be suitable for data management systems in practice. Test results demonstrated that the model can effectively overcome the uncertainties over multiple time periods and can generate very reliable predictions in term of prediction accuracy. Hence, it is indicated that the model can be mounted and utilized on advanced data management systems.