• Title/Summary/Keyword: 고분자 농도

Search Result 834, Processing Time 0.028 seconds

Separation of Bacteria Using Capillary Electrophoresis (모세관 전기영동을 이용한 박테리아의 분리)

  • Moon, Byoung-Geoun;Choi, Kyu-Seong;Lee, Sang-Chun;Kim, Yong-Seong
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.2
    • /
    • pp.144-150
    • /
    • 2004
  • Various experimental factors that affect the separation of bacteria were investigated using capillary electrophoresis. At different buffer concentrations, gram-positive bacteria and gram-negative bacteria showed somewhat different migration behavior under high electric filed. The separation efficiency was also investigated as a function of concentration of bacterium injected into the capillary. In order to separate bacteria as the difference of size and shape, water soluble polymers such as poly(ethylene)oxide (PEO), polyvinylpyirrolidone (PVP), and dextran were studied. PEO, which is more flexible and has lower steric hinderance, showed the best separation efficiency. The mixed bacteria sample of Micrococcus lysodeikticus as gram-positive bacteria and Aerobacter aerogenes as gram-negative bacteria were successfully analyzed with PEO.

Preparation and Characterization of Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] Microsphere (Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] 미립구의 제조 및 특성화)

  • Kang, Hye-Su;Kim, Beom-Soo
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.146-150
    • /
    • 2007
  • Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] microspheres were prepared using solvent evaporation technique. P(3HB-co-4HB) with 3.9 mol% 4HB was synthesized by fed-batch culture of Ralstonia eutropha. The effects of concentration and type of surfactant (Tween 80, sodium dodecylsulfate, and polyvinyl alcohol), addition of dispersion stabilizer (Acacia), concentration of polymer and model drug (bovine serum albumin) on particle size of the microspheres and their in vitro drug release characteristics were investigated. The average particle size of the microspheres decreased with the addition of dispersion stabilizer and increased with the concentration of surfactant, drug and polymer. Amount of drug release increased with decreasing particle size of the microspheres.

Fabrication and Characterization of Orange Polymer Light Emitting Diodes by Concentration of MEH-PPV (MEH-PPV의 농도에 따른 황색 고분자 유기발광다이오드의 제작과 특성평가)

  • Jeon, Chang-Duk;Shin, Sang-Baie;Gong, Su-Choel;Park, Hyung-Ho;Jeon, Hyeong-Tag;Chang, Ho-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.184-185
    • /
    • 2008
  • 본 연구에서는 ITO/PEDOT:PSS//PFO:MEH-PPV/LiF/Al 구조를 갖는 고분자 유기발광다이오드를 제작하여 발광 도펀트인 MEH-PPV의 농도에 따른 황색 PLED 소자의 전기 광학적 특성에 대하여 조사하였다. MEH-PPV의 농도를 각각 6, 7, 8, 9, 10 wt% 로 변화시켜 소자를 평가한 결과 9 wt%의 농도에서 가장 우수한 전기 및 광학적 특성을 보였으며, 16 V의 인가전압에서 약 630 cd/$m^2$의 휘도 특성과 256 mA/$cm^2$의 전류밀도 특성이 관찰되었다. 또한 10 wt%의 소자에서는 오히려 낮은 광학적 특성이 관찰되어 9 wt%에서 도펀트의 농도가 포화됨이 관찰되었고, 제작된 소자의 색좌표 (CIE coordiante)는 모든 소자에서 (x, y = 0,49, 0.49)로 거의 동일하게 나타났다.

  • PDF

자극감응성 고분자막을 통한 약물의 방출조절

  • 임성윤;이영무;성용길;조종수
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.04a
    • /
    • pp.42-43
    • /
    • 1993
  • 최근 많은 연구자들에 의해 고분자재료를 이용하여 약물의 방출속도를 조절하며 이를 통해서 장기간에 걸쳐 치료 유효농도이상의 혈중농도를 유지함으로써 치료효과를 극대화 하려는 연구가 진행되고 있다. 특히 고분자 재료를 이용한 macromolecular drug의 방출조절에 관한 연구가 활발히 진행되고 있다. macromolercular durg은 인슐린, 알부민등의 단백질과 유로키나제등의 효소와 같이 약효는 매우 높으나 적절한 투여 수단이 발견ㄷ되지 않아 투여가 매우 번거로운 단점을 가지고 있다. 이와같은 macromolercular durg의 대부분은 구강을 통해서 투여하는 것은 거의 불가능하며 체내 반감기도 매우 짧아서 적절한 투여 방법의 개선이 필요하다.

  • PDF

The Removal of Styrene using Immobilized Microorganisms in Hydrogel Beads (미생물 고정화 복합고분자담체를 이용한 Styrene 제거)

  • Song, Ji-Hyeon;Ham, Eun-Yi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.648-653
    • /
    • 2006
  • As an alternative for the traditional materials packed in biofilters treating gaseous VOCs, a novel packing material has been developed and tested. In the packing material(named as Hydrogel Bead, HB), pollutant-degrading microorganisms were immobilized in hydrogel consisted of alginate, polyvinyl alcohol(PVA), and powdered activated carbon. A closed-bottle study showed that the HB rapidly removed gaseous styrene without the losses of adsorption and biodegradation capacity. Biofilter column experiments using the HBs also demonstrated that greater than 95% of removal efficiencies were found at an inlet styrene loading rate of $245g/m^3/hr$, which was higher biofilter performance than other elimination capacity reported earlier. Furthermore, when the inlet styrene concentration increased stepwise, the adsorption played an important role in overall styrene removals. The absorbed styrene was found to be biodegraded in the following low inlet loading condition. Consequently, the new HB material is able to successfully minimize the drawbacks of activated carbon(necessity of regeneration) and biological processes(low removal capacity at dynamic loading conditions), and maximize the overall performance of biofilter systems treating VOCs.

Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material (폴리아크릴산 나트륨 염이 함침된 흡수성 고분자 복합 필름의 제조 및 특성 연구)

  • Lee, Youn Suk;Choi, Hong Yeol;Park, Insik
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.530-537
    • /
    • 2014
  • Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at $25^{\circ}C$. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability.

Synthesis of Almost Fully Quavternized Poly(4-vinylpyridine)s by Polymer Reaction and Aggregation Property with Sodium Dodecyl Sulfate (고분자 반응에 의한 거의 완전 4차화된 폴리(4-비닐피리딘)의 합성 및 도데실 황산 소듐과의 응집 특성)

  • Sim, Hoo-Sik;Choi, E-Joon;Kim, Young-Chul;Park, Il-Hyun
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.556-562
    • /
    • 2006
  • Quarternized poly(4-vinyl pyridine)s have been prepared by the reaction of poly (4-vinyl pyridine)s (Mw=50 kg/mol and 200 kg/mol) and alkylating agents varying the carbon numbers of the alkyl groups (m):dimethyl sulfate (m=1) as well as bromoalkane (m= 5, 8, 12, 16, and 22) was used as an alkylating agent. The degree of alkylation was determined by using an elemental analysis and NMR spectroscopy. As a result, polyelectrolytes were obtained by the almost full alkylation of poly (4-vinyl pyridine)s. The critical aggregation concentration (CAC) was determined by measuring the change of turbidity occurred by addition of sodium dodecyl sulfate (SDS) into aqueous solution of quarternized poly-(4-vinyl pyridine)s, and the dependence of molecular weight of polymer, the length of N-alkyl group and concentration of NaCl upon CAC was investigated. As a result, as the molecular weight or the length of alkyl group was increased, less amount of SDS Gould induce the aggregation.

Effects of Polymers on the Cocrystallization of Adefovir Dipivoxil and Suberic Acid (고분자를 이용한 Adefovir Dipivoxil과 Suberic Acid의 공결정 제어)

  • Jung, Sungyup;Kim, Il Won
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.663-668
    • /
    • 2013
  • The effects of polymers on the cocrystallization of adefovir dipivoxil (AD) and suberic acid (SUB) were investigated. The polymeric additives in the present study were poly(ethylene glycol) (PEG) and poly(acrylic acid) (PAA). When the polymers were added to the solution of AD and SUB, their effects were limited to the morphology and crystallinity of the AD/SUB cocrystal, which could be also achieved without polymeric additives by the excess amount of SUB in the solution or through the solvent-assisted grinding. When the polymers were mixed with AD before adding SUB in the solution, PEG was dramatically more effective at the same amount with possible alteration of the cocrystal structure. Also, PAA completely inhibited the formation of crystals. The present study demonstrated that the effects of polymers on the cocrystallization could be tuned by simply modifying the mixing strategy.

Influence of the Pore Properties on Carbon Dioxide Adsorption of PAN-based Activated Carbon Nanofibers (폴리아크릴로니트릴계 활성나노탄소섬유의 기공특성이 이산화탄소 흡착에 미치는 영향)

  • Lee, Dayoung;Cho, Seho;Kim, Yesol;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.592-599
    • /
    • 2013
  • In this study, polyacrylonitrile (PAN)-based porous carbon nanofibers were prepared from PAN polymer solution by electrospinning and KOH activation with various concentrations, and the characterization of pore structures and carbon dioxide adsorption was investigated. Manufactured PAN-based activated carbon nanofibers tend to decrease diameter and increase surface oxygen functional groups depending on the increasing concentration of KOH solution. In addition, according to the results of nitrogen adsorption for pore properties analysis, it indicated increase of the specific surface area in conformity with increasing concentration of KOH solution. Micropore volume of treated activated carbon nanofibers (ANCF) by 4 M KOH was the largest compared with other samples and mesopore volume of treated ANCF by 8 M KOH was the largest volume, respectively. The concentration of KOH effects textural and surface properties, as represented by BET and XPS, which enhance carbon dioxide adsorption capacity at 0 and $25^{\circ}C$.

Degradation of MEA and Characteristics of Outlet Water According to Operation Condition in PEMFC (고분자 전해질 연료전지 구동 조건에 따른 MEA 열화 및 배출수 특성)

  • Hwang, Byungchan;Lee, Sehoon;Na, Il-Chai;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.478-482
    • /
    • 2017
  • Humidity control of proton exchange membrane fuel cell(PEMFC) is very important control condition during driving. In terms of water management, low humidification conditions are advantageous, and high humidification is advantageous in terms of drainage utilization and energy efficiency. In this study, the characteristics of outlet water in low humidification and high humidification process were studied in terms of utilization of discharged water. Since the impurities in the effluent are generated during the degradation of the membrane and the electrode assembly(MEA), degradation of the MEA under low humidification and high humidification conditions was also studied. The rate of radical generation was high at low humidification condition of the anode RH 0%, which showed that it was the main cause of the degradation of the polymer membrane. Analysis of effluent showed low concentration of fluoride ion concentration of about 20 ppb at high humidification (both electrodes RH 100%) and 0.6 V, which was enough to be used as the feed water for electrolysis. Very low concentration of platinum below 0.2 ppb was detected in the condensate discharged from the high humidification condition.