Browse > Article
http://dx.doi.org/10.7317/pk.2013.37.5.592

Influence of the Pore Properties on Carbon Dioxide Adsorption of PAN-based Activated Carbon Nanofibers  

Lee, Dayoung (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Cho, Seho (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Kim, Yesol (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Polymer(Korea) / v.37, no.5, 2013 , pp. 592-599 More about this Journal
Abstract
In this study, polyacrylonitrile (PAN)-based porous carbon nanofibers were prepared from PAN polymer solution by electrospinning and KOH activation with various concentrations, and the characterization of pore structures and carbon dioxide adsorption was investigated. Manufactured PAN-based activated carbon nanofibers tend to decrease diameter and increase surface oxygen functional groups depending on the increasing concentration of KOH solution. In addition, according to the results of nitrogen adsorption for pore properties analysis, it indicated increase of the specific surface area in conformity with increasing concentration of KOH solution. Micropore volume of treated activated carbon nanofibers (ANCF) by 4 M KOH was the largest compared with other samples and mesopore volume of treated ANCF by 8 M KOH was the largest volume, respectively. The concentration of KOH effects textural and surface properties, as represented by BET and XPS, which enhance carbon dioxide adsorption capacity at 0 and $25^{\circ}C$.
Keywords
polymer; polyacrylonitrile; carbon dioxide; KOH; adsorption;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. H. Shin, S. Y. Lim, S. K. Kim, D. H. Peck, B. R. Lee, and D. H. Jung, Korean Chem. Eng. Res., 49, 769 (2011).   DOI
2 D. Y. Kim, Y. C. Kim, and C. Y. Kim, Polymer(Korea), 9, 518 (1958).
3 N. Yusof and A. F. Ismail, J. Anal. Appl. Pyrol., 93, 1 (2012).   DOI   ScienceOn
4 X. Huang, Materials, 2, 2369 (2009).   DOI
5 C. L. Liu, W. S. Dong, G. P. Cao, J. R. Song, L. Liu, and Y. S. Yang, J. Electroanal. Chem., 611, 225 (2007).   DOI   ScienceOn
6 M. Endo, B. J. Lee, Y. A. Kim, Y. J. Kim, H. Muramatsu, T. Yanagisawa, T. Hayashi, M. Terrones, and M. S. Dresselhaus, New J. Phys., 5, 121 (2003).   DOI   ScienceOn
7 Y. J. Kim, Y. Horie, Y. Matsuzawa, S. Wzaki, M. Endo, and M. Dresselhaus, Carbon, 42, 2423 (2004).   DOI   ScienceOn
8 A. Ahmadpour and D. D. Do, Carbon, 34, 471 (1996).   DOI   ScienceOn
9 T. Otowa, Y. Nojima, and T. Miyazaki, Carbon, 35, 1315 (1997).   DOI   ScienceOn
10 M. A. Lillo-Rdenas, D. Cazorla-Amors, and A. Linares-Solano, Carbon, 41, 267 (2003).   DOI   ScienceOn
11 S. H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, and I. Mochida, Carbon, 42, 1723 (2004).   DOI   ScienceOn
12 E. Raymundo-Pinero, P. Azas, T. Cacciaguerra, D. Cazorla-Amors, A. Linares-Solano, and F. Bguin, Carbon, 43, 786 (2005).   DOI   ScienceOn
13 H. R. Yu, J. G. Kim, J. S. Im, T. S. Bae, and Y. S. Lee, J. Ind. Eng. Chem., 18, 674 (2012).   DOI   ScienceOn
14 J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, J. Ind. Eng. Chem., 18, 116 (2012).   DOI   ScienceOn
15 Z. B. Zulamita, C. M. Francisco, and M. C. Carlos, J. Power Sources, 219, 80 (2012).   DOI   ScienceOn
16 B. Lindsay, M. L. Abel, and J. F. Watts, Carbon, 45, 2433 (2007).   DOI   ScienceOn
17 Y. S. Lee, Y. H. Kim, J. S. Hong, J. K. Suh, and G. J. Cho, Catal. Today, 120, 420 (2007).   DOI   ScienceOn
18 M. J. Jung, E. Jeong, S. Cho, S. Y. Yeo, and Y. S. Lee, J. Colloid Interf. Sci., 381, 152 (2012).   DOI   ScienceOn
19 M. J. Jung, E. Jeong, Y. Kim, and Y. S. Lee, J. Ind. Eng. Chem., 19, 1315 (2013).   DOI   ScienceOn
20 J. H. Kim, J. G. Kim, I. P. Hong, and S. S. Lee, J. Korean Inst. Chem. Eng., 34, 668 (1996).
21 H. M. Yu, Y. G. Min, G. H. Lee, J. H. Byeon, and S. J. Park, Polymer(Korea), 36, 321 (2012).
22 Y. S. Lee, Phys. High Tech., 17&18, 18 (2004).
23 C. G. Lee, Korean Chem. Eng. Res., 48, 140 (2010).
24 S. Dhakal and A. K. Raut, Energy Policy, 38, 3781 (2010).   DOI   ScienceOn
25 Martunus M. R. Othman and W. J. N. Fernando, Micropor. Mesopor. Mat., 138, 110 (2011).   DOI   ScienceOn
26 H. R. Yu, S. Cho, B. C. Bai, K. B. Yi, and Y. S. Lee, Int. J. Greenh. Gas Con., 10, 278 (2012).   DOI
27 M. G. Plaza, A. S. Conzlez, C. Pevida, J. J. Pis, and F. Rubiera, Appl. Energ., 99, 272 (2012).   DOI   ScienceOn
28 J. Kim, S. Lee, B. C. Ku, and Y. S. Chung, Text. Sci. Eng., 48, 226 (2011).
29 Y. S. Jo and Y. Y. Kang, J. Environ. Policy, 5, 1 (2006).
30 B. C. Bai, S. Cho, H. R. Yu, K. K. Yi, K. D. Kim, and Y. S. Lee, J. Ind. Eng. Chem., 19, 776 (2013).   DOI   ScienceOn
31 D. J. Jang and S. J. Park, Appl. Chem. Eng., 21, 396 (2010).
32 J. G. Kim, S. C. Kang, E. J. Shin, D. Y. Kom, J. H. Lee, and Y. S. Lee, Appl. Chem. Eng., 23, 47 (2012).
33 O. K. Park, J. H. Kim, S. Lee, J. H. Lee, Y. Chung, J. Kim, and B. C. Ku, Polymer(Korea), 35, 472 (2011).