• Title/Summary/Keyword: 고분자 개발

Search Result 997, Processing Time 0.035 seconds

Introduction of Various Amine Groups onto Poly(glycidyl methacrylate)-g-MWNTs and their Application as Biosensor Supports (폴리(글리시딜 메타크릴레이트)가 그래프트된 다중벽 탄소나노튜브에 다양한 아민 그룹의 도입과 바이오센서 지지체로서의 응용)

  • Chung, Da-Jung;Kim, Ki-Chul;Choi, Seong-Ho
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.470-477
    • /
    • 2012
  • A tyrosinase-immobilized biosensor was developed based on various amine-modified multi-walled carbon nanotube (MWNT) supports for the detection of phenolic compounds. MWNTs with various amine groups were prepared by radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto MWNT supports and the subsequent amination of poly(GMA) graft chains. The physical and chemical properties of the poly(GMA)-grafted MWNT supports and the aminated MWNT supports were investigated by SEM, XPS, and TGA. Furthermore, the electrochemical properties of the prepared tyrosinase-modified biosensor based on MWNT supports with amine groups were also investigated. The response of the enzymatic biosensor was in the range of 0.1-0.9 mM for the concentration of phenol in a phosphate buffer solution. Various parameters influencing biosensor performance have been optimized: binder effects, pH, temperature, and the response to various phenolic compounds. The biosensor was tested on phenolic compounds contained in two different commercial red wines.

Development of Hydrogel Containing Catechin for Wound Dressing (카테킨이 함유된 창상피복제용 하이드로젤의 개발)

  • Kim, Jin;Cho, Eun Bi;Lee, Ki-Young
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.462-469
    • /
    • 2013
  • Catechin (CTEC) is well-known as a very powerful antioxidant, containing the effects of anti-inflammation and skin wound healing. In this study, CTEC/${\beta}$-cyclodextrin (${\beta}$-CD) nanoparticles were incorporated into poly(vinyl alcohol) (PVA)/pectin (PT) hydrogel. The composite was designed for the induction of re-epithelializaton in skin wound. CTEC/${\beta}$-CD nanoparticles were prepared by a molecular complex method. The size of the CTEC nanoparticles formed in the hydrogel was in the range of $250{\pm}17.5$ nm. The incorporation efficiency of CTEC in the nanoparticles was 74%. The cumulative amounts of CTEC released from the hydrogel containing CTEC nanoparticles in the buffers of pH7.4 and 5.5 were $86.51{\pm}3.14%$ and $35.95{\pm}2.14%$ of total CTEC loaded in the hydrogel within 72 h, respectively. Also, in the wound healing test, the CTEC nanoparticles-loaded PVA/PT hydrogel showed faster healing of the wound made in rat dorsum than the CTEC gel.

Fabrication Process of a Nano-precision Polydimethylsiloxane Replica using Vacuum Pressure-Difference Technique (진공 압력차이법에 의한 나노 정밀도를 가지는 폴리디메틸실록산 형상복제)

  • 박상후;임태우;양동열;공홍진;이광섭
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.305-313
    • /
    • 2004
  • A vacuum pressure-difference technique for making a nano-precision replica is investigated for various applications. Master patterns for replication were fabricated using a nano-replication printing (nRP) process. In the nRP process, any picture and pattern can be replicated from a bitmap figure file in the range of several micrometers with resolution of 200nm. A liquid-state monomer is solidified by two-photon absorption (TPA) induced by a femto-second laser according to a voxel matrix scanning. After polymerization, the remaining monomers were removed simply by using ethanol droplets. And then, a gold metal layer of about 30nm thickness was deposited on the fabricated master patterns prior to polydimethylsiloxane molding for preventing bonding between the master and the polydimethylsiloxane mold. A few gold particles attached on the polydimethylsiloxane stamp during detaching process were removed by a gold selecting etchant. After fabricating the polydimethylsiloxane mold, a nano-precision polydimethylsiloxane replica was reproduced. More precise replica was produced by the vacuum pressure-difference technique that is proposed in this paper. Through this study, direct patterning on a glass plate, replicating a polydimethylsiloxane mold, and reproducing polydimethylsiloxane replica are demonstrated with a vacuum pressure-difference technique for various micro/nano-applications.

Scale-up Polymerization of L -Lactide in Supercritical Fluid (초임계 유체에서 L-Lactide의 Scale-up 중합)

  • Prabowo, Benedictus;Kim, Se-Yoon;Choi, Dong-Hoon;Kim, Sao-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.284-288
    • /
    • 2011
  • For the purpose of the pre-industry production of poly(L-lactide) (PLLA) and full understanding of the supercritical polymerization system, large scale polymerization of L-iactide initiated by 1-dodecano/stannous 2-ethyl-hexanoate (DoOH/Sn(Oct)$_2$) was carried out in supercritical chlorodifluoromethane under various reaction conditions (time, temperature and pressure)and reactants (monomer and supercritical solvent) concentrations. A 3 L sized-reactor system was used throughout this study. The monomer conversion increased to 72% on increasing reaction time to 5 h. The molecular weight of PLLA product also increased to 68000 g/moi over the same period. An increase in monomer concentration resulted in a higher molecular weight, up to 144000 g/mol and 97% of monomer conversion. Raising the reaction pressure from 130 to 240 bar also resulted in an increased monomer conversion and molecular weight. To increase heat resistivity of PLLA, methanol treatment and heat-vacuum methods were evaluated. Both of them successfully improved the heat resistivity property of PLLA.

Properties of Polymer-Modified Mortar with Styrene-Butyl Acrylate and Styrene Butadiene Rubber (S/BA와 SBR을 혼입한 폴리머 시멘트 모르타르의 특성)

  • Mun, Kyung-Ju;Song, Hae-Ryong;Hyung, Won-Gil
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.555-560
    • /
    • 2008
  • Polymer-modified mortars have been largely used as paving materials, flooring, waterproofing material, adhesives, anticorrosive linings, deck coverings, and other various materials. The various types and properties of the mixed polymer largely affect the characteristics of polymer-modified mortar that has been mixed with polymer latexes. Consequently, its application purposes are varied according to these properties. This paper investigates the typical properties of polymer-modified mortars that contain styrene and butyl acrylate latexes and styrene butadiene rubber. They are then tested to obtain air contents, water-cement ratios, flexural and compressive strengths, water absorption, and chloride-ion penetration. From the test results, the superior flexural strength of polymer-modified mortars is obtained at a S/BA-2 and a polymer-cement ratio of 20%. And, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the types of polymer. In the polymer-modified mortar and concrete structures, aggregates are bound by such a co-matrix phase, resulting in the superior properties of polymer-modified mortar and concrete compared to conventional mortar and concrete.

Production of Polyethylene Wax via Metallocene Catalysts [(TMDS)$Cp_2$]$ZrCl_2$ and [$(n-Bu)_2Cp_2$]$ZrCl_2$ in the Presence of Hydrogen Gas as a Chain Transfer Reagent (메탈로센 화합물인 [(TMDS)$Cp_2$]$ZrCl_2$ 촉매와 [$(n-Bu)_2Cp_2$]$ZrCl_2$ 촉매를 이용한 고품질의 폴리에틸렌 왁스 제조)

  • Kim, Ji-Yoon;Yoon, Seok-Young;Yang, Young-Do;Noh, Seok-Kyun
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.566-572
    • /
    • 2008
  • Polyethylene has been prepared via metallocene catalysts [(TMDS)$Cp_2$]$ZrCl_2$, 1, and [$(n-Bu)_2Cp_2$]$ZrCl_2$, 2, in the presence of hydrogen as a chain transfer reagent. Increase of hydrogen flow to the polymerization reactor resulted in the drop of catalytic activity, reduction of molecular weight of polyethylene, getting narrow of molecular weight distribution of polyethylene, and melting point of the polyethylene wax. It should be noticed that it was possible to control molecular weight down to 1500 and melting temperature to 60 $^\circ$C of polyethylene wax using the catalyst 1 that has been developed by authors as well as the catalyst 2 from Exxon.

Development of Aloin Loaded PVA/CMC Hydrogel for Wound Healing (알로인이 함유된 창상치료제용 PVA/CMC 하이드로젤의 개발)

  • Kim, Jin;Lee, Chang Moon;Kim, Dong-Woon;Lee, Ki-Young
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.802-808
    • /
    • 2013
  • The purpose of this study was to develop an aloin-loaded wound dressing with an enhanced healing effect. The cross-linked hydrogel films were prepared with poly(vinyl alcohol) (PVA) and carboxyl methyl cellulose (CMC) using a freeze-thawing (F-T) method. Their gel properties, release of drug, in vivo wound healing effect and histopathology were then evaluated. In the wound healing test, this aloin loaded PVA/CMC hydrogel showed faster healing of the wound made in rat dorsum than the aloin carbomer 934 gel or the control (carbomer 934 gel) due to phytochemical activity of aloin and moisture of CMC. In conclusion, the aloin-loaded wound dressing composed of 5% PVA, 5% CMC and 0.125% aloin is a potential wound dressing with enhanced wound healing effect.

하이브리드 화학증기증착법을 이용한 금속기판 위 그래핀의 저온합성

  • Lee, Byeong-Ju;Park, Se-Rin;Yu, Han-Yeong;Lee, Jeong-O;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.77-77
    • /
    • 2010
  • 그래핀(Graphene)은 한 겹(layer)의 2차원 판상 구조에 탄소원자들이 육각형의 기본 형태로 배열되어 있는 나노재료로서, 우수한 역학적 강도와 화학적, 열적 안정성 및 흥미로운 전기 전자적 성질을 가지고 있는 것으로 알려져 있다. 최근, 이러한 특징적이고도 우수한 물성으로 인하여 기초물성 연구에서부터 차세대 응용까지 고려한 각종 연구들이 활발하게 진행되고 있다. 일반적으로 그래핀을 얻는 방법에는 물리 화학적 박리, 열화학증기증착법(TCVD), 탄화규소의 흑연화, 흑연산화물의 환원 등의 방법들이 알려져 있다. 그 중 TCVD법이 두께의 균일성이 높은 그래핀을 합성하는데 가장 적절한 것으로 알려져 있다. 그러나 TCVD법은 탄소를 포함하는 원료가스를 분해하기 위하여 고온의 공정을 필요로 하게 되지만, 향후 산업적 응용을 고려한다면 대면적 그래핀의 저온합성법 개발은 풀어야 할 시급한 과제로 인식되고 있다. 현재는 메탄을 원료가스로 사용하여 $900^{\circ}C$ 이상에서 그래핀을 합성하는 추세이고, 최근 아세틸렌등의 활성원료가스를 이용하여 $900^{\circ}C$ 이하에서 저온 합성한 연구결과들도 속속 보고되고 있다. 본 연구에서는 고주파 플라즈마를 이용하여 비교적 저온에서 탄소원료가스를 효율적으로 분해하고, 확산플라즈마 영역에 TCVD 챔버를 결합한 하이브리드 화학증기증착법을 이용하여 그래핀의 저온합성을 도모하였다. 원료가스로는 메탄을 사용하였고, 기판으로는 전자빔증착법으로 증착한 니켈 박막 및 구리포일을 사용하였다. 실험결과, 그래핀은 $600^{\circ}C$ 부근의 저온에서도 수 층으로 이루어진 그래핀이 합성된 것을 확인하였다. 합성한 그래핀은 분석의 용이함 및 향후 다양한 응용을 위하여 실리콘산화막 및 투명고분자 기판 위에 전사(transfer)하였다. 합성된 그래핀의 구조평가를 위해서는 광학현미경과 Raman분광기를 주로 사용하였으며, 원자힘현미경(AFM), 주사전자현미경(SEM), 투과전자현미경(TEM) 등도 이용하였다.

  • PDF

Failure Mechanism and Long-Term Hydrostatic Behavior of Linear Low Density Polyethylene Tubing (선형저밀도 폴리에틸렌 튜빙의 파손 메커니즘과 장기 정수압 거동)

  • Weon, Jong-Il;Chung, Yu-Kyoung;Shin, Sei-Moon;Choi, Kil-Yeong
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.440-445
    • /
    • 2008
  • The failure mechanism and failure morphology of linear low density polyethylene (LLDPE) tubing under hydrostatic pressure were investigated. Microscopic observations using video microscope and scanning electron microscope indicate that the failure mode is a brittle fracture including cracks propagated from inner wall to outer wall. In addition, oxidation induction time and Fourier transform infrared spectroscopy results show the presence of exothermic peak and the increase in carbonyl index on the surface of fractured LLDPE tubing, due to thermal-degradation. An accelerated life test methodology and testing system for LLDPE tubing are developed using the relationship between stresses and life characteristics by means of thermal acceleration. Statistical approaches using the Arrhenius model and Weibull distribution are implemented to estimate the long-term life time of LLDPE tubing under hydrostatic pressure. Consequently, the long-term life time of LLDPE tubing at the operating temperature of $25^{\circ}C$ could be predicted and also be analyzed.

A study of changes on the physical properties of silk fibroin biological membrane according to the dissolving conditions (실크피브로인 용해조건에 따른 생체막의 물성 변화)

  • Jo, You-Young;Kweon, HaeYong;Lee, Kwang-Gill;Lee, Heui-Sam
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.71-75
    • /
    • 2012
  • Silk is a natural polymer that has the advantages of the biocompatibility, excellent mechanical strength, low immune rejection, and molding facility. But silk does not dissolve easily in water or general solvent. To investigate the characteristics of silk biological membranes according to dissolving condition of silk fibroin, we made the silk biological membranes using silk fibroin solutions with different amount and dissolving time of silk. The characterizations of the silk biological membranes such as morphology, structure, and mechanical strength were observed. Although each biological membrane has the same fibroin content, there was a significant difference in the thickness and transparency. But there was no significant change in the molecular weight of the silk fibroin solutions and morphology of silk biological membranes. We were established the manufacturing condition for silk fibroin biological membrane. So we expect that the conditions will help in the development of medical supplies in the future.