• Title/Summary/Keyword: 고무 씩

Search Result 16, Processing Time 0.02 seconds

Effect of Magnesium Oxide on Physical and Chemical Properties of FKM Elastomer (FKM Elastomer의 물리적 및 화학적 성질에 미치는 산화마그네슘의 영향)

  • Lee, Chang-Seop;Choi, Gi-Tae;Choi, Han-Hwal
    • Elastomers and Composites
    • /
    • v.38 no.1
    • /
    • pp.57-64
    • /
    • 2003
  • Metal oxide(MgO) was added to FKM rubber in order to develop automotive fuel hose which ran show elastic characteristics under extreme condition. Cure characteristics, physical properties, thermal resistance and fuel resistance of FKM compounded rubber with MgO were investigated. MgO was mixed to FKM rubber materials within the range of $0{\sim}20phr$. From the test results of rheological properties and Mooney viscosity, the $t_{s2}$, $T_{c90}$ values increased as the MgO contents increased in FKM rubber compounding. Hardness and 100% modulus of FKM compounded rubber slightly increased, but tensile strength and elongations at break slightly decreased. From the test results of thermal resistance of rubber specimens at 130, 150, and $170^{\circ}C$ for 70 hrs, the changing rate of physical properties was found to be relatively small. Fuel resistance tests were carried out for fuel A, B, C and D at $40^{\circ}C$ for 70hrs, and the results showed that the changing rate in physical properties was found to increase from Fuel A to D, Furthermore thermal properties of FKM compounded rubber containing MgO were also investigated by using TGA/DSC. The optimum mixing ratio of additive to FKM rubber to get the maximum effect on thermal resistance and fuel resistance, within the range of desirable specification for rubber material, was determined to be 6 phr for MgO.

Effects of Silica-Silane for CIIR Vibration Isolation Compound upon Increased Mechanical Properties (실리카-실란이 클로로부틸 방진고무 복합소재의 기계적 물성 증가에 미치는 영향)

  • Kim, Sung Min;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.107-113
    • /
    • 2015
  • The effects of silica-silane in CIIR vibration isolation compound were investigated regarding mechanical and dynamic properties. Addition of silica-silane in the compound resulted in higher tear resistance strength and elongation at break than the control, which was increased by 13% and 14%, respectively. Other values such as tensile strength and hardness did not show significant changes. Viscoelastic property results supported that the improvement of tear resistance strength and elongation at break resulted from the formation of 3-dimensional network structure between silica and CIIR. The mechanism of the tear resistance strength and elongation at break improvement was discussed.

A Study on Noise Resistance and Physical Properties of NBR Rubber Materials Containing Oleamide and Aramid Chip (Oleamide 및 아라미드 칩을 첨가한 NBR 고무재료의 내소음성 및 물성 연구)

  • Kim, Hyun-Muk;Lee, Chang-Seop
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.79-87
    • /
    • 2006
  • This study are conducted for the purpose of developing rubber material with noise and crack resistance. Cure characteristics, physical properties, thermal resistance, fuel resistance, abrasion resistance, crack resistance and noise resistance of NBR compounds with the various amounts of oleamide and aramid chip were investigated. From the measurements of cure characteristics and Mooney viscosities, cure characteristics of uncured rubber showed that a torque was decreased as the amount of oleamide increased. Hardness, modulus and elongation of rubber specimens tended to be reduced gradually, however, tensile strength remained unchanged as the amount of the oleamide increased. As a testing results of heat resistance for 70 hours at $120^{\circ}C$ and oil resistance far 70 hours at $40^{\circ}C$, tensile strength and elongation were all reduced. From the TGA/DSC analysis, there was no such a change observed in thermal characteristics of rubber materials. As a result of testing basic physical properties, abrasion resistance, noise resistance and crack resistance, the optimum ratio of oleamide to NBR was found to be 3 phr, while that of aramid to NBR 227001 was 1 phr.

A Study on Shape Optimization for Seal Groove of Disc Caliper using Finite Element Method and Taguchi's Method (유한요소해석과 다구찌 방법에 의한 디스크 캘리퍼 씰 홈의 형상 최적화에 관한 연구)

  • Kim, Jin-Han;Kim, Soo-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.88-94
    • /
    • 2006
  • A typical disk brake system consists of caliper housing, piston, seal and two pads etc. The configuration of seal groove, dimension of piston and seal, and seal material properties are important ones for brake performance, as these affect the retraction of piston. The rubber seal is designed to perform dual functions of sealing the brake oil at brake-applied and retracting the caliper piston at brake-released. In this paper, the seal stress is analyzed using Finite Element Method and experiment is conducted by Taguchi's Method. We attempt to quantify the critical design factors in the seal groove and evaluate their impact on some of brake performance factors. The investigation obtained from this study can not only enhance the seal groove design optimization, but also reduce product prototype testing and development time.

Mechanical Properties of Polyurethane Foam Prepared from Prepolymer with Resin Premix (Prepolymer와 Resin Premix로 부터 제조된 Polyurethane Foam의 기계적 성질)

  • Kim, Tae Sung;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.241-248
    • /
    • 2013
  • Polyester type polyurethane foam has low hydrolysis resistance. It was overcome with addition of acrylic polyol by quasi prepolymer method. Tensile strength and hardness of polyurethane foam contained acrylic polyol was increased with increasing of acrylic polyol contents. But split tear strength and tear strength was slightly changed. Hydrolysis resistance of polyurethane foam was measured by loss % of tensile strength. It was improved with increasing of acrylic polyol contents from 25.5g to 102g.

Evaluation of Chemical Resistance Performance of Synthetic Rubber and Cement Based Injection Repair Materials Used in Underground Concrete Structures (지하 콘크리트 구조물에 적용되는 합성고무계 및 시멘트계 주입형 보수재료의 화학 저항성능평가)

  • Kim, Soo-Yeon;Lee, Yeon-Sil;Song, Je-Young;Kim, Byoungil;Oh, Sang-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.148-155
    • /
    • 2017
  • In this study, by using the international standards ISO TS 16774, Part 2 Test method for chemical resistance as a quality control method of injection type repair material used for leakage crack of underground concrete structure, the performance requirement against of chemical environment of underground concrete structures for repair materials was tested. For this testing 3 types for each of the 2 classes of repair materials(synthetic rubber, cement), with a total of 9 types repair materials, were selected and examined. As a result, the test results showed that the smallest performance deterioration by the change in the mass was with the synthetic rubber(RG) type as opposed to the cement type system, showing that the synthetic rubber type had the strongest relative resistance to chemical exposure. Furthermore, it is necessary to investigate the material with high resistance to chemical substances and to examine the material which can increase resistance to sodium hydroxide and sodium chloride in cement system. These results can be used as a basic index for the selection of repair materials with the strongest resistance to chemical environment found in concrete structures. In addition, it is expected that the test results derived in this study can be used as reference data that can be reflected in the quality improvement of the maintenance material to be developed later.

A Study on the Performance Evaluation of Water(wash out) Resistance of 5-Type Repair Materials in Water Leakage of Underground Concrete Structures (지하 콘크리트 구조물 누수부위에 시공되는 5계열 보수재료의 유실 저항 성능 평가 연구)

  • Kim, Soo-Yeon;Yoo, Jae-Yong;Oh, Sang-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.61-68
    • /
    • 2020
  • In this study, the international standard ISO TS 16774 Part 3 Test Method for Water (wash out) Resistance and KS F 4935 「Sealant Injection type for water leakage maintenance of adhesive flexible rubber asphalt series」, which are standardized as a quality control method of injection type repair materials used for water leakage cracks in underground concrete structures, are currently used in Korea. As a result, considering the performance criteria of "mass change rate -0.1%" stipulated in KS F 4935, the remaining 13 types repair materials, excluding RG-2 of synthetic rubber and UG-1 of urethane, need to be reviewed for stabilization of the loss resistance due to the flow of ground water. The results of this study are determined to be available as a basic indicator for the selection of repair materials used for cracks in concrete structures. In addition, it is expected that the results of this study can be utilized as reference data that can be reflected in the improvement of the quality of repair materials that will be researched and developed later.

Graft Copolymerization of Acrylic Monomer Containing Aromatic Carboxylic Acid Group onto EPDM and Their Mechanical Properties (EPDM에 방향족 카르복시산을 함유하는 아크릴 단량체의 그라프트 공중합과 기계적 특성)

  • Park, Hyun-Ju;Park, Jong-Hyuk;Bae, Jong-Woo;Kim, Gu-Ni;Oh, Sang-Taek
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.216-222
    • /
    • 2012
  • In this study, p-acryloyloxybenzoic acid(ABA) was synthesized with p-hydroxybenzoic acid(HBA) and acryloyl chloride(AC). The synthesized ABA monomer was grafted onto ethylene-propylene-diene rubber(EPDM) in toluene using benzoyl peroxide(BPO) as an initiator. The structures of ABA and EPDM-g-ABA were characterized by FT-IR, $^1H$-NMR, and $^{13}C$-NMR spectrometer. The graft ratio of EPDM-g-ABA increased with increasing the concentration of the initiator and the monomer. Mechanical properties such as tensile strength and compression set of the EPDM-g-ABA were improved with increasing the graft ratio. The $T_g$ and initial decomposition temperature were also increased with increasing the graft ratio.

Analysis and Isolation of Cultivator Vibration transmitted to Hand (손으로 전달된 관리기 진동의 분석과 방진 대책)

  • 박영준;채문권;김경욱
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.104-110
    • /
    • 2002
  • 본 연구는 보행형 관리기의 손으로 전달되는 진동특성을 실험적으로 해석하고 평가하며 방진 방안을 제시할 목적으로 수행되었다. 관리기의 작업기 중에서 설문을 통해 사용 빈도가 높은 3개의 작업기(중경로터리, 중경제초기, 구굴기)를 선정하였고 각 작업기별 진동수준을 측정하였다. 진동 방지 방안에 대해서는 4개의 방진 장치(고무 패드, 방진 장갑, 핸들 방진 장치, 엔진 마운트)를 선정하여 각 방진 장치별 진동수준을 측정하였다. 방진 장치의 성능을 정확하게 비교하기 위해 진동의 측정은 진동수준이 가장 높은 구굴기에서 수행되었다. 실험결과에 의하면 관리기 작업이 작업자의 인체에 해를 끼칠 위험이 매우 크지만 이 결과는 작업자가 매일 3시간씩 관리기를 사용할 경우를 기준으로 설정한 값이기 때문에 실제로 관리기 사용일수가 많지 알은 대부분의 우리나라 사용자들에게 적용하는데는 한계가 있음을 밝힌다. 그렇다 하더라도 관리기의 주 사용자는 보행형 관리기 뿐만 아니라 보행형 경운기나 보행형 이앙기 등의 손으로 전달되는 진동이 심한 기계를 함께 사용하는 경우가 많음을 고려하면 방진 장치를 개발하거나 진동수준이 낮은 농작업기계를 개발하여 작업환경을 개선하는 조치가 필요하다고 생각한다. 그러므로 농작업기계에 대한 진동수준에 대한 종합적인 연구와 그에 대한 대책 마련이 지속적으로 수행되어야 할 것이다.

  • PDF

Vibration Damping Ratio Performance Evaluation According to the Polymer Mixing Rate of SBR-based Polymer Modified Mortar through Ultrasonic Pulse Analysis (초음파 펄스 분석을 통한 SBR계 폴리머 혼입 모르타르의 폴리머 혼입률에 따른 진 동감쇠비 성능 평가)

  • Jeong, Min-Goo;Jang, Jong-Min;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.543-551
    • /
    • 2022
  • The mechanical performance and vibration damping ratio performance of a specimen according to the polymer mixing rate were evaluated for polymer modified mortar. As a polymer, Styrene Butadiene Rubber(SBR) liquid polymer with a solid content of about 49~51% was used, and the polymer content was increased by liquid 5%. The specimen was 40*40*160(mm), and after curing, compressive strength, flexural strength, and vibration damping ratio were measured using the ultrasonic pulse method. As a result, it was found that the compressive strength decreased as the polymer was mixed, but the flexural strength was increased. The vibration damping ratio increased by 11% at 5% polymer, 28% at 10% polymer, 33% at 15% polymer, and 72 at 20% polymer. I was found that the incorporation of the polymer was very effective to reduce the vibration of the mortar. In addition, through SEM and SEM-EDS analysis, it is determined that the cause of vibration reduction due to polymer mixing is that the polymer film formed in the transition zone of aggregate and internal voids buffered the vibration of the mortar inside. Taken together, in the scope of this study, the appropriate polymer mixing ratio for reducing the vibration of mortar is judged to be about 7.5%.