DOI QR코드

DOI QR Code

실리카-실란이 클로로부틸 방진고무 복합소재의 기계적 물성 증가에 미치는 영향

Effects of Silica-Silane for CIIR Vibration Isolation Compound upon Increased Mechanical Properties

  • 투고 : 2014.06.17
  • 심사 : 2014.07.26
  • 발행 : 2015.01.25

초록

클로로부틸(CIIR) 방진고무 복합소재 내에서 실리카-실란이 기계적 물성과 점탄성에 미치는 영향을 평가하였다. 실리카-실란이 첨가된 경우, 방진고무의 핵심물성 중 하나인 인열강도는 13%, 파단 신장률은 14%씩 각각 증가하였다. 그 외 인장강도 및 경도 등은 비슷한 값을 보였다. 점탄성 관찰로부터 인열강도 및 파단 신장률의 증가는 실리카-실란의 첨가에 의한 복합소재 내 실리카와 클로로부틸간 3차원 사슬구조의 형성에 따른 것으로 판단되었다. 인열강도 및 파단 신장률의 향상에 관한 메커니즘을 논의하였다.

The effects of silica-silane in CIIR vibration isolation compound were investigated regarding mechanical and dynamic properties. Addition of silica-silane in the compound resulted in higher tear resistance strength and elongation at break than the control, which was increased by 13% and 14%, respectively. Other values such as tensile strength and hardness did not show significant changes. Viscoelastic property results supported that the improvement of tear resistance strength and elongation at break resulted from the formation of 3-dimensional network structure between silica and CIIR. The mechanism of the tear resistance strength and elongation at break improvement was discussed.

키워드

참고문헌

  1. J. W. Bae, Rubber Technology, 11, 113 (2010).
  2. R. German, Non-Tyre Rubber Components in the Automotive Industry, Rapra Technology LTD., Shawbury, 1999.
  3. A. Turnip, K. S. Hong, and S. H. Park, J. Mech. Sci. Technol., 23, 232 (2009).
  4. M. R. Jolly, J. W. Bender, and J. D. Carlson, 5th Annual International Symposium on Smart Structures and Materials, International Society for Optics and Photonics, p. 262 (1998).
  5. S. Wolff, Rubber Chem. Technol., 69, 325 (1996). https://doi.org/10.5254/1.3538376
  6. F. Thurn, K. Burmester, J. Pochert, and S. Wolff, U.S. Patent 3,873,489 (1975).
  7. K. J. Kim and J. Vanderkooi, Kautsch. Gummi Kunstst., 55, 518 (2002).
  8. K. J. Kim and J. Vanderkooi, Rubber Chem. Technol., 78, 84 (2005). https://doi.org/10.5254/1.3547875
  9. K. J. Kim and J. Vanderkooi, J. Appl. Polym. Sci., 95, 623 (2005). https://doi.org/10.1002/app.21373
  10. K. J. Kim and J. Vanderkooi, Compos. Interface, 11, 471 (2004). https://doi.org/10.1163/1568554042722946
  11. K. J. Kim, Asian J. Chem., 25, 5119 (2013).
  12. S. M. Kim and K. J. Kim, Polymer(Korea), 38, 1 (2014).
  13. N. Kimura, T. Tohyama, and T. Taguchi, U.S. Patent 7,776,950B2 (2010).
  14. K. J. Kim and S. G. Shin, Korean Patent 10-2013-0023743 (2013).
  15. M. Yamamoto, U.S. Patent 2014/0080979 A1 (2014)
  16. Y. S. Kim, Korean Patent 10-2009-0056087 (2009).
  17. R. Brown, Physical Testing of Rubber, Chapman & Hall, Boundary Row, 1996.
  18. T. G. Mezger, The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers, Vincentz, Hannover, 2006.
  19. M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2009.
  20. J. L. White and K. J. Kim, Thermoplastic and Rubber Compounds: Technology and Physical Chemistry, Hanser, Munich, 2008.
  21. K. J. Kim and J. L. White, J. Ind. Eng. Chem., 7, 50 (2001).
  22. K. J. Kim, Carbon Lett., 10, 109 (2009). https://doi.org/10.5714/CL.2009.10.2.109
  23. J. Y. Lee, S. M. Kim, and K. J. Kim, Polymer(Korea), accepted.
  24. G. R. Hamed, Rubber Chem. Technol., 64, 493 (1991). https://doi.org/10.5254/1.3538566
  25. G. R. Hamed, Rubber Chem. Technol., 67, 529 (1994). https://doi.org/10.5254/1.3538689
  26. H. Atashi and M. Shiva, Asian J. Chem., 22, 7519 (2010).