Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.1.107

Effects of Silica-Silane for CIIR Vibration Isolation Compound upon Increased Mechanical Properties  

Kim, Sung Min (Dong Ah Tire & Rubber Co., Ltd.)
Kim, Kwang-Jea (Dong Ah Tire & Rubber Co., Ltd.)
Publication Information
Polymer(Korea) / v.39, no.1, 2015 , pp. 107-113 More about this Journal
Abstract
The effects of silica-silane in CIIR vibration isolation compound were investigated regarding mechanical and dynamic properties. Addition of silica-silane in the compound resulted in higher tear resistance strength and elongation at break than the control, which was increased by 13% and 14%, respectively. Other values such as tensile strength and hardness did not show significant changes. Viscoelastic property results supported that the improvement of tear resistance strength and elongation at break resulted from the formation of 3-dimensional network structure between silica and CIIR. The mechanism of the tear resistance strength and elongation at break improvement was discussed.
Keywords
vibration isolation; chlorobutyl rubber (CIIR); silica-silane; tear resistance; viscoelastic properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. W. Bae, Rubber Technology, 11, 113 (2010).
2 R. German, Non-Tyre Rubber Components in the Automotive Industry, Rapra Technology LTD., Shawbury, 1999.
3 A. Turnip, K. S. Hong, and S. H. Park, J. Mech. Sci. Technol., 23, 232 (2009).
4 M. R. Jolly, J. W. Bender, and J. D. Carlson, 5th Annual International Symposium on Smart Structures and Materials, International Society for Optics and Photonics, p. 262 (1998).
5 S. Wolff, Rubber Chem. Technol., 69, 325 (1996).   DOI
6 F. Thurn, K. Burmester, J. Pochert, and S. Wolff, U.S. Patent 3,873,489 (1975).
7 K. J. Kim and J. Vanderkooi, Kautsch. Gummi Kunstst., 55, 518 (2002).
8 K. J. Kim and J. Vanderkooi, Rubber Chem. Technol., 78, 84 (2005).   DOI
9 K. J. Kim and J. Vanderkooi, J. Appl. Polym. Sci., 95, 623 (2005).   DOI   ScienceOn
10 K. J. Kim and J. Vanderkooi, Compos. Interface, 11, 471 (2004).   DOI   ScienceOn
11 K. J. Kim, Asian J. Chem., 25, 5119 (2013).
12 S. M. Kim and K. J. Kim, Polymer(Korea), 38, 1 (2014).
13 N. Kimura, T. Tohyama, and T. Taguchi, U.S. Patent 7,776,950B2 (2010).
14 K. J. Kim and S. G. Shin, Korean Patent 10-2013-0023743 (2013).
15 M. Yamamoto, U.S. Patent 2014/0080979 A1 (2014)
16 Y. S. Kim, Korean Patent 10-2009-0056087 (2009).
17 R. Brown, Physical Testing of Rubber, Chapman & Hall, Boundary Row, 1996.
18 T. G. Mezger, The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers, Vincentz, Hannover, 2006.
19 M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2009.
20 J. L. White and K. J. Kim, Thermoplastic and Rubber Compounds: Technology and Physical Chemistry, Hanser, Munich, 2008.
21 K. J. Kim and J. L. White, J. Ind. Eng. Chem., 7, 50 (2001).
22 K. J. Kim, Carbon Lett., 10, 109 (2009).   DOI   ScienceOn
23 J. Y. Lee, S. M. Kim, and K. J. Kim, Polymer(Korea), accepted.
24 G. R. Hamed, Rubber Chem. Technol., 64, 493 (1991).   DOI
25 G. R. Hamed, Rubber Chem. Technol., 67, 529 (1994).   DOI
26 H. Atashi and M. Shiva, Asian J. Chem., 22, 7519 (2010).