• Title/Summary/Keyword: 고고지자기 분석

Search Result 5, Processing Time 0.018 seconds

Application of Dates of Terrestrial Magnetism to Archaeological Remains - Centered on a Charcoal Kiln with Side Window at Maegokdong, Ulsan - (고고유적에 대한 고고지자기연대법의 적용 - 울산 매곡동 유적 측구부탄요에 대한 적용사례를 중심으로 -)

  • Sung, Hyong-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.12
    • /
    • pp.214-221
    • /
    • 2008
  • Terrestrial magnetism has left traces through residues such as fossils of the terrestrial magnetism as time went by. An analysis of archaeological terrestrial magnetism is an estimation of dates of archaeological remains where baked earth is exposed by measuring the change of the past terrestrial magnetism through thermo-remnant magnetization of baked earth. This paper attempts to apply an analysis of the archaeological terrestrial magnetism to archaeological remains using fourteen soil samples extracted from a charcoal kiln with side window located at the Area Ⅰ of Maegokdong. The date of A.D.440${\pm}$15 the analysis of archaeological terrestrial magnetism came up with gives solid evidence, while an archeological chronicle used arrangements of surrounding artifacts because of the absence of remains and assumed uncertainly that a charcoal kiln with side window was from the three kingdom periods. This analysis of archaeological terrestrial magnetism has come to anchor as a main natural scientific analysis because it relatively easily removes pollutants and comes up with highly reliable results owing to its considerably narrow error tolerance of assumed dates.

Archaeomagnetic Dating of Baked Earth Samples of Samheung-ri Kilns in Gangjin Region (강진 삼흥리 가마 소토시료의 고고지자기 연대측정)

  • Sung, Hyong Mi
    • Journal of Conservation Science
    • /
    • v.31 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • Investigation on relics was performed by dividing the site of Samheung-ri, Gangjin-gun, Jeonranam-do into six districts, A to F, and as a result, total 16 kilns including Celadon kilns and pottery kilns were found. Among them, total 9 kilns found from A D E F districts including 3 Celadon kilns, 6 pottery kilns, went through archaeomagnetic analysis with baked earth samples collected from them. Since those baked earth samples showed good baking conditions as well as high soil quality, it was possible to gain archaeomagnetic data with high reliability. Through archaeomagnetic analysis, it was possible to obtain archaeomagnetic dating for each of the 9 kilns corresponding to the period between A.D. 990~1250, and the results also correspond to archaeological dating estimated to fall under the period of Goryeo. Also, it was examined if there was any difference in the operational periods of the kilns by districts, and there was difference of periods from archaeomagnetic dating in the order of district D(A.D.1100) ${\rightarrow}$ E F(A.D.1180) ${\rightarrow}$ A(A.D.1210). This result tells us that the kilns in district D stopped operating the earliest and were deserted, and next, those in districts E and F almost at the same time, and lastly, those in district A operated to the last and then were disposed.

Geomagnetic Paleosecular Variation in the Korean Peninsula during the First Six Centuries (기원후 600년간 한반도 지구 자기장 고영년변화)

  • Park, Jong kyu;Park, Yong-Hee
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.611-625
    • /
    • 2022
  • One of the applications of geomagnetic paleo-secular variation (PSV) is the age dating of archeological remains (i.e., the archeomagnetic dating technique). This application requires the local model of PSV that reflects non-dipole fields with regional differences. Until now, the tentative Korean paleosecular variation (t-KPSV) calculated based on JPSV (SW Japanese PSV) has been applied as a reference curve for individual archeomagnetic directions in Korea. However, it is less reliable due to regional differences in the non-dipole magnetic field. Here, we present PSV curves for AD 1 to 600, corresponding to the Korean Three Kingdoms (including the Proto Three Kingdoms) Period, using the results of archeomagnetic studies in the Korean Peninsula and published research data. Then we compare our PSV with the global geomagnetic prediction model and t-KPSV. A total of 49 reliable archeomagnetic directional data from 16 regions were compiled for our PSV. In detail, each data showed statistical consistency (N > 6, 𝛼95 < 7.8°, and k > 57.8) and had radiocarbon or archeological ages in the range of AD 1 to 600 years with less than ±200 years error range. The compiled PSV for the initial six centuries (KPSV0.6k) showed declination and inclination in the range of 341.7° to 20.1° and 43.5° to 60.3°, respectively. Compared to the t-KPSV, our curve revealed different variation patterns both in declination and inclination. On the other hand, KPSV0.6k and global geomagnetic prediction models (ARCH3K.1, CALS3K.4, and SED3K.1) revealed consistent variation trends during the first six centennials. In particular, the ARCH3K.1 showed the best fitting with our KPSV0.6k. These results indicate that contribution of the non-dipole field to Korea and Japan is quite different, despite their geographical proximity. Moreover, the compilation of archeomagnetic data from the Korea territory is essential to build a reliable PSV curve for an age dating tool. Lastly, we double-check the reliability of our KPSV0.6k by showing a good fitting of newly acquired age-controlled archeomagnetic data on our curve.

Reconsideration of the Construction Period of the Jeongnimsaji Temple Site (정림사지 창건시기 재고)

  • Tahk, Kyung-Baek
    • Journal of architectural history
    • /
    • v.25 no.4
    • /
    • pp.57-64
    • /
    • 2016
  • It was believed that Jeongnimsa temple was built after the capital was moved from Gongju to Buyeo. It was confirmed that it was built A.D. $625{\pm}20$ by conducting a paleomagnetic analysis on the fireplace, which was recently found at the bottom of Jungmunji(middle gate). Consequently, it is assumed that the temple was built in the early 7th century unlike the previous point of view. Therefore, this study evaluated if the fireplace at the bottom of Jungmunji was found at the geological stratum representing the Jeongnimsa temple. Moreover, the study examined when the fireplace at the bottom of Jungmunji was constructed on the soil stratum. It is possible that the fireplace was built in the early 7th century as shown in the paleomagnetic analysis. However, when we compared the soil strata of the Jungmunji and the existing five-story stone pagoda, it showed that the ground was prepared differently and they were built over a fairly long period of time. Furthermore, I discovered that there was a wooden pagoda under the five-story stone pagoda by examining the soil strata map. Therefore, previous studies evaluated the arrangement of auxiliary buildings of Jeongnimsa temple and concluded that it was built in the early 7th century. It is hard to determine when the temple was built based on the arrangement of auxiliary buildings, because it takes a long time to build a temple and auxiliary buildings can be relocated during this long construction period. Rather, we have to admit that there are various arrangement patterns through minor changes in buildings from the one pagoda and one main building(Geumdang) arrangement.

A Study on the Characteristics and the Kiln Site of Production of the Buncheong Ware Excavated from the Placenta Chamber (Taesil) in Seongju during the Reign of King Sejong (1418-1450) in the Joseon Dynasty (세종대(1418~1450) 성주 세종대왕자(世宗大王子) 태실(胎室) 출토 <분청사기 상감연판문 반구형뚜껑>의 제작 특징과 제작지 고찰)

  • AHN, Sejin
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.4
    • /
    • pp.192-211
    • /
    • 2021
  • In Seongju, Gyengsangbuk-do, the Placenta Chamber (胎室, Taesil) of 18 sons and a son of the crown prince of King Sejong(世宗大王) is located in one place. Taesil refers to the place where the umbilical cord and placenta, which are separated when the baby is born, are placed in a jar made of pottery and stone box and then buried on the ground. The placenta chamber in Seongju has the Buncheong ware (粉靑沙器) cover buried on the ground to protect the baby's placenta. These covers are all hemispherical, with a diameter of more the 20cm. The decorations were made using black and white inlaid techniques only on the outside. The Buncheong ware cover with this shape and pattern has been confirmed only in the placenta chamber in Seongju. This study targets 6 of the Buncheong ware cover whose owners were identified, when and where they were prepared, what the stylistic features and meanings are, and where it was produced. The results of the study are as follows. First, ss a result of reviewing the production background and procurement system of this bowl, it was inferred that it was sourced from Jangheunggo (長興庫) at the central government office, between 1436 and 1439, when the event to bury the placenta of royal members in the ground was the most active. Second, it analyzed the unique features of this cover, such as the shape, pattern, and baked traces. The shape and pattern were compared to the ritual objects contained in the Sejong Silok Oryeui (『世宗實錄』 「五禮」, Five Rites of King Sejong Chronicle) and the lid of the royal placenta jar made in the 15th and 16th centuries. Third, this study suggests that the baking method was based on the shape and location of the traces remaining outside the cover. Finally, the following data were used to estimate the production site: the relationship with the 'Jagiso (磁器所, ceramic workshop) registered in the Sejong Silok Jiriji (『世宗實錄』 「地理志」, Geographical Appendix of King Sejong Chronicle); various records of contribution and dedication about the Buncheong ware made here; and the Buncheong ware and related tools excavated from the kiln site in the area. The place where the Buncheong ware cover was produced is estimated to be the most likely production site for the kiln site in Chunghyo-dong Kiln Site, located in Jeolla-do province by synthesizing the data above.