Browse > Article
http://dx.doi.org/10.9720/kseg.2022.4.611

Geomagnetic Paleosecular Variation in the Korean Peninsula during the First Six Centuries  

Park, Jong kyu (Department of Geophysics, Kangwon National University)
Park, Yong-Hee (Division of Geology & Geophysics, Kangwon National University)
Publication Information
The Journal of Engineering Geology / v.32, no.4, 2022 , pp. 611-625 More about this Journal
Abstract
One of the applications of geomagnetic paleo-secular variation (PSV) is the age dating of archeological remains (i.e., the archeomagnetic dating technique). This application requires the local model of PSV that reflects non-dipole fields with regional differences. Until now, the tentative Korean paleosecular variation (t-KPSV) calculated based on JPSV (SW Japanese PSV) has been applied as a reference curve for individual archeomagnetic directions in Korea. However, it is less reliable due to regional differences in the non-dipole magnetic field. Here, we present PSV curves for AD 1 to 600, corresponding to the Korean Three Kingdoms (including the Proto Three Kingdoms) Period, using the results of archeomagnetic studies in the Korean Peninsula and published research data. Then we compare our PSV with the global geomagnetic prediction model and t-KPSV. A total of 49 reliable archeomagnetic directional data from 16 regions were compiled for our PSV. In detail, each data showed statistical consistency (N > 6, 𝛼95 < 7.8°, and k > 57.8) and had radiocarbon or archeological ages in the range of AD 1 to 600 years with less than ±200 years error range. The compiled PSV for the initial six centuries (KPSV0.6k) showed declination and inclination in the range of 341.7° to 20.1° and 43.5° to 60.3°, respectively. Compared to the t-KPSV, our curve revealed different variation patterns both in declination and inclination. On the other hand, KPSV0.6k and global geomagnetic prediction models (ARCH3K.1, CALS3K.4, and SED3K.1) revealed consistent variation trends during the first six centennials. In particular, the ARCH3K.1 showed the best fitting with our KPSV0.6k. These results indicate that contribution of the non-dipole field to Korea and Japan is quite different, despite their geographical proximity. Moreover, the compilation of archeomagnetic data from the Korea territory is essential to build a reliable PSV curve for an age dating tool. Lastly, we double-check the reliability of our KPSV0.6k by showing a good fitting of newly acquired age-controlled archeomagnetic data on our curve.
Keywords
geomagnetic secular variation; global geomagnetic prediction model; Korean paleosecular variation curve;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pavon-Carrasco, F.J., Rodriguez-Gonzalez, J., Osete, M.L., Torta, J.M., 2011, A Matlab tool for archaeomagnetic dating, Journal of Archaeological Science, 38(2), 408-419.   DOI
2 Schnepp, E., Lanos, P., 2005, Archaeomagnetic secular variation in Germany during the past 2500 years, Geophysical Journal International, 163(2), 479-490.   DOI
3 Schnepp, E., Lanos, P., 2006, A preliminary secular variation reference curve for archaeomagnetic dating in Austria, Geophysical Journal International, 166(1), 91-96.   DOI
4 Sternberg, R.S., 1982, Archaeomagnetic secular variation of direction and paleointensity in the American Southwest, Ph.D. Thesis, The University of Arizona, 59-76.
5 Hirooka, K., 1971, Archaeomagnetic study for the past 2000 years in Southwest Japan, Memoirs of the Faculty of Science, Kyoto University: Series of Geology and Mineralogy, 38(2), 167-207.
6 Sasajima, S., 1965, Geomagnetic secular variation revealed in the baked earths in West Japan (part 2) change of the field intensity, Journal of Geomagnetism and Geoelectricity, 17(3-4), 413-416.   DOI
7 Lengyel, S.N., Eighmy, J.L., 2002, A revision to the U.S. southwest archaeomagnetic master curve, Journal of Archaeological Science, 29(12), 1423-1433.   DOI
8 Morinaga, H., Inokuchi, H., Yaskawa, K., 1986, Magnetization of a stalagmite in Akiyoshi Plateau as a record of the geomagnetic secular variation in West Japan, Journal of Geomagnetism and Geoelectricity, 38(1), 27-44.   DOI
9 Park, J.H., Park, Y.H., 2014, A study of geomagnetic directional change in East Asia during the past 3000 years, Journal of the Geological Society of Korea, 50(2), 241-256 (in Korean with English abstract).   DOI
10 Watanabe, N., 1958, Secular variation in the direction of geomagnetism as the standard scale for geomagnetochronology in Japan, Nature, 182(4632), 383-384.   DOI
11 Korhonen, K., Donadini, F., Riisager, P., Pesonen, L.J., 2008, GEOMAGIA50: An archeointensity database with PHP and MySQL, Geochemistry Geophysics Geosystems, 9(4), Q04029.
12 Ali, M., Oda, H., Hayashida, A., Takemura, K., Torii, M., 1999, Holocene palaeomagnetic secular variation at Lake Biwa, central Japan, Geophysical Journal International, 136(1), 218-228.   DOI
13 Batt, C.M., 1997, The British archaeomagnetic calibration curve: An objective treatment, Archaeometry, 39(1), 153-168.   DOI
14 Beguin, A., Pimentel, A., de Groot, L.V., 2021, Full-vector paleosecular variation curve for the Azores: Enabling reliable paleomagnetic dating for the past 2 kyr, Journal of Geophysical Research: Solid Earth, 126(2), e2020JB019745.
15 Korte, M., Constable, C., 2011, Improving geomagnetic field reconstructions for 0-3 ka, Physics of the Earth and Planetary Interiors, 188(3), 247-259.   DOI
16 Fisher, R., 1955, Statistical methods and scientific induction, Journal of the Royal Statistical Society: Series B (Methodological), 17(1), 69-78.   DOI
17 Sheng, M., Wang, X., Dekkers, M.J., Chen, Y., Chu, G., Tang, L., Pei, J., Yang, Z., 2019, Paleomagnetic secular variation and relative paleointensity during the Holocene in South China-Huguangyan Maar Lake revisited, Geochemistry, Geophysics, Geosystems, 20(6), 2681-2697.   DOI
18 Pavon-Carrasco, F.J., Osete, M.L., Torta, J.M., Gaya-Pique, L.R., 2009, A regional archeomagnetic model for Europe for the last 3000years, SCHA.DIF.3K: Applications to archeomagneticdating, Geochemistry, Geophysics, Geosystems, 10(3), Q03013.
19 Molina-Cardin, A., Campuzano, S.A., Osete, M.L., Rivero-Montero, M., Pavon-Carrasco, F.J., Palencia-Ortas, A., MartinHernandez, F., Gomez-Paccard, M., Chauvin, A., Guerrero-Suarez, S., Perez-Fuentes, J.C., McIntosh, G., Catanzariti, G., Sastre Blanco, J.C., Larrazabal, J., Fernandez Martinez, V.M., Alvarez Sanchis, J.R., Rodriguez-Hernandez, J., Martin Viso, I., Garcia i Rubert, D., 2018, Updated Iberian archeomagnetic catalogue: New full vector paleosecular variation curve for the last three millennia, Geochemistry, Geophysics, Geosystems, 19(10), 3637-3656.   DOI
20 Yamazaki, T., Joshima, M., Saito, Y., 1985, Geomagnetic inclination during last 9,000 years recorded in sediment cores from Lake Kasumigaura, Japan, Journal of Geomagnetism and Geoelectricity, 37(2), 215-221   DOI
21 Yu, Y., Doh, S.J., Kim, W., Park, Y.H., Lee, H.J., Yim, Y., Cho, S.G., Oh, Y.S., Lee, D.S., Lee, H.H., Gong, M.G., Hyun, D.H., Cho, J.K., Sin, Y.S., Do, M.S., 2010, Archeomagnetic secular variation from Korea: Implication for the occurrence of global archeomagnetic jerks, Earth and Planetary Science Letters, 294(1-2), 173-181.   DOI
22 Zijderveld, J.D.A., 1967, A. C. demagnetization of rocks: Analysis of results, In: Collinson, D.W., Creer, K.M., Runcorn, S.K. (Eds.), Methods in Paleomagnetism, Elsevier, Amsterdam, 254-286.
23 Korte, M., Constable, C., 2003, Continuous global geomagnetic field models for the past 3000 years, Physics of the Earth and Planetary Interiors, 140(1), 73-89.   DOI
24 Batt, C.M., Brown, M.C., Clelland, S.J., Korte, M., Linford, P., Outram, Z., 2017, Advances in archaeomagnetic dating in Britain: New data, new approaches and a new calibration curve, Journal of Archaeological Science, 85, 66-82.   DOI
25 Brown, M.C., Donadini, F., Nilsson, A., Panovska, S., Frank, U., Korhonen, K., Schuberth, M., Korte, M., Constable, C.G., 2015b, GEOMAGIA50.v3: 2. A new paleomagnetic database for lake and marine sediments, Earth, Planets and Space, 67, 70.   DOI
26 Constable, C., Korte, M., Panovska, S., 2016, Persistent high paleosecular variation activity in southern hemisphere for at least 10000 years, Earth and Planetary Science Letters, 453, 78-86.   DOI
27 Gallet, Y., Genevey, A., Fluteau, F., 2005, Does Earth's magnetic field secular variation control centennial climate change?, Earth and Planetary Science Letters, 236(1-2), 339-347.   DOI
28 Hayashida, A., Ali, M., Kuniko, Y., Kitagawa, H., Torii, M., Takemura, K., 2007, Environmental magnetic record and paleosecular variation data for the last 40 kyrs from the Lake Biwa sediments, Central Japan, Earth, Planets and Space, 59(7), 807-814.   DOI
29 Hyodo, M., Yoshihara, A., Kashiwaya, K., Okimura, T., Masuzawa, T., Nomura, R., Tanaka, S., Xing, T.B., Qing, L.S., Jian, L.S., 1999, A Late Holocene geomagnetic secular variation record from Erhai Lake, southwest China, Geophysical Journal International, 136(3), 784-790.   DOI
30 Korte, M., Constable, C.G., 2006, On the use of calibrated relative paleointensity records to improve millennial-scale geomagnetic field models, Geochemistry, Geophysics, Geosystems, 7(9), Q09004.
31 Brown, M.C., Donadini, F., Korte, M., Nilsson, A., Lodge, A., Lengyel, S., Korhonen, K., Constable, C.G., 2015a, GEO MAGIA50.v3: 1. General structure and modifications to the archaeological and volcanic database, Earth, Planets and Space, 67, 83.   DOI
32 Cai, S., Tauxe, L., Deng, C., Qin, H., Pan, Y., Jin, G., Chen, X., Chen, W., Xie, F., Zhu, R., 2016, New archaeomagnetic direction results from China and their constraints on palaeosecular variation of the geomagnetic field in Eastern Asia, Geophysical Journal International, 207(2), 1332-1342.   DOI
33 Cai, S., Tauxe, L., Paterson, G.A., Deng, C., Pan, Y., Qin, H., Zhu, R., 2017, Recent advances in Chinese archeomagnetism, Frontiers in Earth Science, 5, 92.   DOI
34 Gallet, Y., Montana, M.M., Genevey, A., Garcia, X.C., Thebault, E., Bach, A.G., Le Goff, M., Robert, B., Nachasova, I., 2015, New Late Neolithic (c. 7000-5000 BC) archeointensity data from Syria. Reconstructing 9000years of archeomagnetic field intensity variations in the Middle East, Physics of the Earth and Planetary Interiors, 238, 89-103.   DOI
35 Korte, M., Genevey, A., Constable, C.G., Frank, U., Schnepp, E., 2005, Continuous geomagnetic field models for the past 7 millennia: 1. A new global data compilation, Geochemistry, Geophysics, Geosystems, 6(2), Q02H15.
36 Usui, Y., Tian, W., 2017, Paleomagnetic directional groups and paleointensity from the flood basalt in the Tarim large igneous province: Implications for eruption frequency, Earth, Planets and Space, 69(1), 1-12.   DOI
37 Wei, Q., Li, T.C., Chao, G.Y., Chang, W.S., Wang, S.P., 1981, Secular variation of the direction of the ancient geomagnetic field for Loyang region, China, Physics of the Earth and Planetary Interiors, 25(1), 107-112.   DOI
38 Zananiri, I., Batt, C.M., Lanos, P., Tarling, D.H., Linford, P., 2007, Archaeomagnetic secular variation in the UK during the past 4000 years and its application to archaeomagnetic dating, Physics of the Earth and Planetary Interiors, 160(2), 97-107.   DOI
39 Zanella, E., Tema, E., Lanci, L., Regattieri, E., Isola, I., Hellstrom, J.C., Costa, E., Zanchetta, G., Drysdale, R.N., Magri, F., 2018, A 10,000 yr record of high-resolution Paleosecular Variation from a flowstone of Rio Martino Cave, Northwestern Alps, Italy, Earth and Planetary Science Letters, 485, 32-42.   DOI
40 Gallet, Y., Genevey, A., Courtillot, V., 2003, On the possible occurrence of 'archaeomagnetic jerks' in the geomagnetic field over the past three millennia, Earth and Planetary Science Letters, 214(1-2), 237-242.   DOI
41 Gomez-Paccard, M., Chauvin, A., Lanos, P., McIntosh, G., Osete, M.L., Catanzariti, G., Ruiz-Martinez, V.C., Nunez, J.I., 2006, First archaeomagnetic secular variation curve for the Iberian Peninsula: Comparison with other data from western Europe and with global geomagnetic field models, Geochemistry, Geophysics, Geosystems, 7(12), Q12001.
42 Hyodo, M., Itota, C., Yaskawa, K., 1993, Geomagnetic secular variation reconstructed from magnetizations of wide-diameter cores of Holocene sediments in Japan, Journal of Geomagnetism and Geoelectricity, 45(8), 669-696.   DOI
43 Lee, Y.S., Doh, S.J., Park, Y.H., Seo, K.S., Kim, J.Y., 2001, Archaeomagnetic study for some historical kiln sites in the western Korea: The application for the t-KPSV (tentative-Korea paleosecular variation) curve, Journal of the Geological Society of Korea, 37(1), 115-132 (in Korean with English abstract).
44 Kirschvink, J.L., 1980, The least-squares line and plane and the analysis of palaeomagnetic data, Geophysical Journal of the Royal Astronomical Society, 62, 699-718.   DOI
45 Korte, M., Constable, C.G., 2005, Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K, Geochemistry, Geophysics, Geosystems, 6(1), Q02H16.
46 Korte, M., Donadini, F., Constable, C.G., 2009a, Geomagnetic field for 0-3 ka: 1. New data sets for global modeling, Geochemistry, Geophysics, Geosystems, 10(6), Q06007.
47 Korte, M., Donadini, F., Constable, C.G., 2009b, Geomagnetic field for 0-3 ka: 2. A new series of time-varying global models, Geochemistry, Geophysics, Geosystems, 10(6), Q06008.
48 Le Goff, M., Gallet, Y., Genevey, A., Warme, N., 2002, On archaeomagnetic secular variation curves and archaeomagnetic dating, Physics of the Earth and Planetary Interiors, 134(3-4), 203-211.   DOI
49 Matsumoto, T., Ueno, H., Kobayashi, T., 2007, A new secular variation curve for South Kyushu, Japan, and its application to the dating of some lava flows, Reports of the Faculty of Science, Kagoshima University, 40, 35-49.
50 Morinaga, H., Inokuchi, H., Yaskawa, K., 1989, Palaeomagnetism of stalagmites (speleothems) in SW Japan, Geophysical Journal International, 96(3), 519-528.   DOI
51 Noel, M., Batt, C.M., 1990, A method for correcting geographically separated remanence directions for the purpose of archaeomagnetic dating, Geophysical Journal International, 102(3), 753-756.   DOI