• Title/Summary/Keyword: 계산기하학

Search Result 76, Processing Time 0.029 seconds

Fractal Analysis of the Carbonization Pattern Formed on the Surface of a Phenolic Resin (페놀수지 표면에 형성된 탄화패턴에 대한 프랙탈 해석)

  • Kim, Jun-Won;Park, Sang-Taek;Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.124-129
    • /
    • 2010
  • When a phenolic resin is carbonized by the leakage current flowing along its surface, the carbonization pattern is one of the most important factors to determine its carbonization characteristics. However, the typical carbonization pattern of a phenolic resin is too complicated to be analyzed by conventional Euclidean geometry. In most cases, such a complicated shape shows a fractal structure. It is possible, therefore, to examine the characteristics of the carbonization pattern regarding a given phenolic resin. In order to quantitatively investigate the carbonization pattern of the phenolic resin carbonized by a leakage current, in this paper, the fractal dimension of the carbonization pattern has been calculated as a function of the magnitude of a leakage current and the distance between two electrodes. For reliability of calculation, the correlation function as well as the box counting method has been used to calculate the fractal dimension. According to the result of calculation, the fractal dimension increases as the current increases at the constant electrode gap distance. However, there is no significant relation between the fractal dimension and the electrode gap distance at a constant current.

Vision-based Camera Localization using DEM and Mountain Image (DEM과 산영상을 이용한 비전기반 카메라 위치인식)

  • Cha Jeong-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.177-186
    • /
    • 2005
  • In this Paper. we propose vision-based camera localization technique using 3D information which is created by mapping of DEM and mountain image. Typically, image features for localization have drawbacks, it is variable to camera viewpoint and after time information quantify increases . In this paper, we extract invariance features of geometry which is irrelevant to camera viewpoint and estimate camera extrinsic Parameter through accurate corresponding Points matching by Proposed similarity evaluation function and Graham search method we also propose 3D information creation method by using graphic theory and visual clues, The Proposed method has the three following stages; point features invariance vector extraction, 3D information creation, camera extrinsic Parameter estimation. In the experiments, we compare and analyse the proposed method with existing methods to demonstrate the superiority of the proposed methods.

  • PDF

SATELLITE'S LAUNCH WINDOW CALCULATION BY ASTRODYNAMICAL METHODS (천체역학적 방법을 이용한 인공위성의 최적발시간대)

  • 우병삼;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.308-319
    • /
    • 1994
  • We can launch satellites only at a certain time which satisfies special conditions, since the current techniques cannot overcome these constraints. Launch window constraints are the eclipse duration, solar aspect angle, attitude control, launch site and the launch vehicle constraints, etc. In this paper, launch window is calculated that satisfies all these constraints. In calculating launch window, the basic concepts are relative locations of the sun-satellite-earth system and relative velocities of these, and these requires geometric consideration for each satellite. Launch window calculation was applied to Kitsat 2(low earth orbit) and Koreasat(geostationary orbit). The result is shown in the form of a graph that has dates on the X-axis and the corresponding times of the given day on the Y-axis.

  • PDF

Development of an Expert System for Precision Reducer Design of Robot (로봇용 정밀 감속기 설계 전문가 시스템 개발)

  • Park, Dae-Hyun;Nam, Won-Ki;Jang, In-Hun;Oh, Se-Hoon;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.19-25
    • /
    • 2007
  • Among the precision reduction gent drivers lot robot system, the cycloid reducer is well known for it's high performances. Designing this reducer, there are many factors which must be considered. First, a geometrical analysis of tooth shape must be drawn from the basic concept. Second, loads, stresses and modification factors on tooth should be calculated exactly. Finally, a computer software to optimize the design of cycloid tooth needs developing on the basis of the geometric and force equations. In this research, the expert system to design the cycloid reducer was developed using Visual C++ so, the most important factors can be obtained automatically as the user put the simple input data.

A Study on Geometrical Probability Instruction through Analysis of Bertrand's Paradox (Bertrand's Paradox 의 분석을 통한 기하학적 확률에 관한 연구)

  • Cho, Cha-Mi;Park, Jong-Youll;Kang, Soon-Ja
    • School Mathematics
    • /
    • v.10 no.2
    • /
    • pp.181-197
    • /
    • 2008
  • Bertrand's Paradox is known as a paradox because it produces different solutions when we apply different method. This essay analyzed diverse problem solving methods which result from no clear presenting of 'random chord'. The essay also tried to discover the difference between the mathematical calculation of three problem solvings and physical experiment in the real world. In the process for this, whether geometric statistic teaching related to measurement and integral calculus which is the basic concept of integral geometry is appropriate factor in current education curriculum based on Laplace's classical perspective was prudently discussed with its status.

  • PDF

A Study on Possibility of Teaching Complex Numbers from Geometric Aspect (기하학적 측면에서 복소수의 지도가능성 고찰)

  • Lee, Dong-Hwan
    • Journal of Educational Research in Mathematics
    • /
    • v.18 no.1
    • /
    • pp.51-62
    • /
    • 2008
  • In the 7th-curriculum, only basic arithmetics of complex numbers have been taught. They are taught formally like literal manipulations. This paper analyzes mathematically essential relations between algebra of complex numbers and plane geometry. Historical analysis is also performed to find effective methods of teaching complex numbers in school mathematics. As a result, we can integrates this analysis with school mathematics by help of Viete's operations on right triangles. We conclude that teaching geometric interpretation of complex numbers is possible in school mathematics.

  • PDF

A Geometric Derivation of the Craig Representation for the Two-Dimensional Gaussian Q-Function (이변량 가우시안 Q-함수의 Craig 표현에 대한 기하학적인 유도)

  • Park, Seung-Keun;Lee, Il-Kyoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.325-328
    • /
    • 2011
  • In this paper, we present a new and simple derivation of the Craig representation for the two-dimensional (2-D) Gaussian Q-function in the viewpoint of geometry. The geometric derivation also leads to an alternative Craig form for the 2-D Gaussian Q-function. The derived Craig form is newly obtained from the geometry of two wedge-shaped regions generated by the rotation of Cartesian coordinates over two correlated Gaussian noises. The presented Craig form can play a important role in computing the probability represented by the 2-D Gaussian Q-function.

A Geometric Proof on Shortest Paths of Bounded Curvature (제한된 곡률을 갖는 최단경로에 대한 기하학적 증명)

  • Ahn, Hee-Kap;Bae, Sang-Won;Cheong, Otfried
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.4
    • /
    • pp.132-137
    • /
    • 2007
  • A point-wise car-like robot moving in the plane changes its direction with a constraint on turning curvature. In this paper, we consider the problem of computing a shortest path of bounded curvature between a prescribed initial configuration (position and orientation) and a polygonal goal, and propose a new geometric proof showing that the shortest path is either of type CC or CS (or their substring), where C specifies a non-degenerate circular arc and S specifies a non-degenerate straight line segment. Based on the geometric property of the shortest path, the shortest path from a configuration to a polygonal goal can be computed in linear time.

A Minimun-diameter Spanning Tree with Bounded Degrees (제한된 분지수를 가지는 최소지름 신장트리)

  • 안희갑;신찬수
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.78-85
    • /
    • 2004
  • Given a set S of n points in the plane, a minimum-diameter spanning tree(MDST) for the set might have a degree up to n-1. This might cause the degradation of the network performance because the node with high degree should handle much more requests than others relatively. Thus it is important to construct a spanning tree network with small degree and diameter. This paper presents an algorithm to construct a spanning tree for S satisfying the following four conditions: (1) the degree is controled as an input, (2) the tree diameter is no more than constant times the diameter of MDST, (3) the tree is monotone (even if arbitrary point is fixed as a root of the tree) in the sense that the Euclidean distance from the root to any node on the path to any leaf node is not decreasing, and (4) there are no crossings between edges of the tree. The monotone property will play a role as an aesthetic criterion in visualizing the tree in the plane.

A Convex Layer Tree for the Ray-Shooting Problem (광선 슈팅 문제를 위한 볼록 레이어 트리)

  • Kim, Soo-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.753-758
    • /
    • 2017
  • The ray-shooting problem is to find the first intersection point on the surface of given geometric objects where a ray moving along a straight line hits. Since rays are usually given in the form of queries, this problem is typically solved as follows. First, a data structure for a collection of objects is constructed as preprocessing. Then, the answer for each query ray is quickly computed using the data structure. In this paper, we consider the ray-shooting problem about the set of vertical line segments on the x-axis. We present a new data structure called a convex layer tree for n vertical line segments given by input. This is a tree structure consisting of layers of convex hulls of vertical line segments. It can be constructed in O(n log n) time and O(n) space and is easy to implement. We also present an algorithm to solve each query in O(log n) time using this data structure.