A Geometric Proof on Shortest Paths of Bounded Curvature

제한된 곡률을 갖는 최단경로에 대한 기하학적 증명

  • 안희갑 (세종대학교 컴퓨터공학과) ;
  • 배상원 (한국과학기술원 전산학과) ;
  • 정지원 (한국과학기술원 전산학과)
  • Published : 2007.04.15

Abstract

A point-wise car-like robot moving in the plane changes its direction with a constraint on turning curvature. In this paper, we consider the problem of computing a shortest path of bounded curvature between a prescribed initial configuration (position and orientation) and a polygonal goal, and propose a new geometric proof showing that the shortest path is either of type CC or CS (or their substring), where C specifies a non-degenerate circular arc and S specifies a non-degenerate straight line segment. Based on the geometric property of the shortest path, the shortest path from a configuration to a polygonal goal can be computed in linear time.

평면상에서 이동하는 자동차와 같은 로봇은 이동방향을 변경할 때 제한된 곡률(curvature)로 서서히 방향을 바꿀 수밖에 없다. 본 논문은 물체의 동선의 곡률이 제한되어 있을 경우, 한 구성에서 출발하여 목표점에 이르는 최단경로는 CC 혹은 CS 타입(C는 원호(circular arc), S는 선분(line segment)을 의미한다), 혹은 이들의 부분문자열 타입이 된다는 사실을 기하학적 성질만을 이용하여 증명하였다. 본 연구결과를 이용하여, 시작점 구성에서 출발하여 목표점, 혹은 목표다각형에 도달하는 최단경로는 다각형의 공간복잡도의 선형시간에 계산 가능하다.

Keywords

References

  1. L. E. Dubins. On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents. American Journal of Mathematics, 79:497-516, 1957 https://doi.org/10.2307/2372560
  2. H. K. Ahn, O. Cheong, Ji?? Matou?ek and Antoine Vigneron. Reachability by paths of bounded curvature in convex polygons. In Proc. 16th Annu. ACM Symposium on Computational Geometry, pages 251-259, 2000 https://doi.org/10.1145/336154.336211
  3. J.-D. Boissonnat, A. Cerezo and J. Leblond. Shortest paths of bounded curvature in the plane. Proc. IEEE Int. Conf. on Robotics and Automation, pages 2315-2320, 1992 https://doi.org/10.1109/ROBOT.1992.220117
  4. J.-D. Boissonnat and S. Lazard. A polynomialtime algorithm for computing a shortest path of bounded curvature amidst moderate obstacles. ACM Symp. on Computational Geometry, pages 242-251, 1996
  5. X.-N. Bui, P. Soueres, J.-D. Boissonnat and J.-P. Laumond. Shortest path synthesis for Dubins non-holonomic robots, Proc. IEEE Int. Conf. on Robotics and Automation, pages 2-7, 1994 https://doi.org/10.1109/ROBOT.1994.351019
  6. J. Barraquand and J.-C. Latombe. On nonholonomic mobile robots and optimal maneuvering, Revue d'Intelligence Artificielle, 3(2):77-104, 1989
  7. P. Jacobs and J. Canny. Planning smooth paths for mobile robots. In Nonholonomic Motion Planning, Z. Li and J. F. Canny, editors, pages 271-342, Kluwer Academic Publishers, Norwell, MA, 1992
  8. P. Jacobs, J.-P. Laumond and M. Taix. Efficient motion planners for non-holonomic mobile robots. In IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, 1991 https://doi.org/10.1109/IROS.1991.174668
  9. M. Vendittelli and J.-P. Laumond. Obstacle distance for car-like robots. IEEE Trans. Robot. Automat., 15(4):678-691, 1999 https://doi.org/10.1109/70.781973