• Title/Summary/Keyword: 경화 모델

Search Result 296, Processing Time 0.037 seconds

SE-LSTMNet Model Using Polar Conversion for Diagnosis of Atherosclerosis (죽상동맥경화증 진단을 위한 극좌표 변환과 SE-LSTMNet 모델)

  • Na, In-ye;Park, Hyunjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.294-296
    • /
    • 2022
  • Atherosclerosis is a chronic vascular inflammatory disease in which plaque builds up in the arteries and impairs blood flow. This can lead to heart disease and stroke. Since most people do not have any symptoms until the artery is severely narrowed, early detection of atherosclerosis is critical. In this paper, in order to effectively detect atherosclerotic lesions in tube-shaped blood vessels, polar conversion is applied to MRI images based on the vessel center. We then propose a SE-LSTMNet model using continuous signal information for each angle of a polar coordinate image. The trained model showed classification performance of 0.9194 accuracy, 0.9370 sensitivity, 0.8796 specificity, 0.8700 F1 score, and 0.9719 AUC on the validation data.

  • PDF

Mechanical Properties and Stress-Strain Model of Re-Bars Coldly Bent and Straightened (굽힌 후 편 철근의 기계적 성질과 응력-변형률 모델)

  • Chun, Sung-Chul;Tak, So-Young;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.195-204
    • /
    • 2012
  • In the construction of high-rise buildings, bent re-bars are manually straightened to connect slabs to core-walls, which are usually cast before floor structures. During cold bending and straightening of re-bars, plastic deformation causing work hardening, Bauschinger effect and aging hardening is unavoidable. Tensile tests of coldly bent and straightened re-bars were conducted with test parameters of grade, diameter, and bend radius of re-bars as well as age between bending and straightening. Test results showed that proportional limits were lower and strain hardening occurred without yield plateaus. Inside and outside of re-bars with compression and tension deformations, respectively, during bending showed lower yield points due to Bauschinger effect and no yield plateaus due to work hardening, respectively. When re-bar grade was higher, yield point became significantly lower where Grade 400 re-bars had yield strengths lower than specified yield strength of 400 MPa. Because the surface of re-bar has higher strength than the core of re-bar, Bauschinger effect was more obvious for higher-grade re-bars. When age between bending and straightening was greater, yield strength increased and elongation decreased (i.e. embrittlement occurs). Using measured data, stress-strain relationship for straightened re-bars was developed based on Ramberg-Osgood model, which can be used to evaluate stiffness of joints when straightened re-bars are applied.

Current Status and Application Prospects of Anti-Atherosclerotic Active Biomaterials (항동맥경화 활성 바이오소재 개발 연구 동향 및 활용 전망)

  • Seunghee Kim;Jeongho Lee;Hah Young Yoo
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.133-141
    • /
    • 2024
  • Atherosclerosis, a disease with high morbidity and mortality worldwide, is a chronic inflammatory disease that is a major cause of cardiovascular diseases such as stroke and myocardial infarction. Atherosclerosis is characterized by the accumulation of lipid deposits in the arteries, forming atheromas. This leads to the narrowing of the arteries and thrombosis. Recently, the need to develop bio-derived anti-atherosclerotic materials has been highlighted with concerns about the side effects of synthetic therapeutics. Accordingly, related research (such as the discovery of biomaterials for the improvement and treatment of atherosclerosis and the identification of mechanisms) has been actively conducted. Biomaterials including polysaccharides, polyphenols, and coenzyme Q10 have been reported to inhibit or delay symptoms by modulating factors involved in the development of atherosclerosis. For biomaterials with superior activity, in vivo anti-atherosclerotic activity has been confirmed. In this review, the pathogenesis of atherosclerosis was investigated, and the current status and application prospects of biomaterials with anti-atherosclerotic activity were proposed.

Implicit Stress Integration of the Generalized Isotropic Hardening Constitutive Model : 1. Formulation (일반 등방경화 구성관계에 대한 내재적인 음력적분 : 1. 정식화)

  • 오세붕;이승래
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.145-156
    • /
    • 1996
  • An implicit stress integration algorithm was formulated for implementing an aiusotorpic hardening constitutive model which has been based op the generalized isotropic hardening rule in nonlinear finite element analysis technique. the rate form of stress tensor was implicitly integrated using the generalized trapezoidal rule and the tangent stress-strain modulus was evaluated consistently with the nonlinear solution technique. As a result, it has been found that the nonlinear analysis with the anisotropic hardening constitutive model might be performed accurately and efficiently.

  • PDF

Selection of the Optimal Finite Element Type by Material Hardening Behavior Model in Elbow Specimen (엘보우 시편에서의 재료 경화 거동 모델에 따른 최적의 유한 요소 선정)

  • Heo, Eun Ju;Kweon, Hyeong Do
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.84-91
    • /
    • 2017
  • This paper is proposed to select the optimal finite element type in finite element analysis. Based on the NUREG reports, static analyses were performed using a commercial analysis program, $ABAQUS^{TM}$. In this study, we used a nonlinear kinematic hardening model proposed by Chaboche. The analysis result of solid elements by inputting the same material constants was different from the results of the NUREG report. This is resulted from the difference between shell element and solid element. Therefore, the material constants that have similar result to the experimental result were determined and compared according to element type. In case of using solid element for efficient finite element analysis, we confirmed that the use of C3D8I element type(incompatible mode 8-node linear brick element) leads the accurate result while reducing the analysis time.

A Study on Smart Cure of Filament Wound Composite Flywheel (필라멘트 와인딩 플라이휠의 스마트 경화에 관한 연구)

  • 이도훈;김선경;김동진;이우일;하성규
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.34-41
    • /
    • 2003
  • A cure process control model was proposed to optimize the curing process of thick filament wound structure. There are two types of smart cure, one is that the boundary conditions of the hollow cylinder are same between inner surface and outer surface, and the other is that inner surface temperature is slightly higher than outer surface to initiate cure reaction from the inner side to the outer side to reduce residual stress.

A Simple Constitutive Model for Soil Liquefaction Analysis (액상화 해석을 위한 간단한 구성모델)

  • Park Sung-Sik;Kim Young-Su;Byrne P. M;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.27-35
    • /
    • 2005
  • Several damages due to large displacement caused by liquefaction have been reported increasingly. Numerical procedures based on effective stress analysis are therefore necessary to predict liquefaction-induced deformation. In this paper, the fully coupled effective stress model called UBCSAND is proposed to simulate pore pressure rise due to earthquake or repeated loadings. The proposed model is a modification of the simple perfect elasto-plactic Mohr-Coulomb model, and can simulate a continuous yielding by mobilizing friction and dilation angles below failure state. Yield function is defined as the ratio of shear stress to mean normal stress. It is radial lines on stress space and has the same shape of Mohr-Columob failure envelope. Plastic hardening is based on an isotropic and kinematic hardening rule. The proposed model always causes plastic deformation during loading and reloading but it predicts elastic unloading. It is verified by capturing direct simple shear tests on loose Fraser River sand.

Prediction of Temperature and Degree of Cure of Carbon Fiber Composites Considering Thermal Chemical Reaction (화학 반응열을 고려한 탄소 섬유 복합재 온도와 경화도 예측)

  • Jae-Woo Yu;Wie-Dae Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.315-320
    • /
    • 2023
  • In the manufacturing process of thermosetting carbon fiber composite materials using an autoclave, the internal temperature changes according to the set temperature cycle. This temperature change causes the resin in the composite material to cure. Heat is generated through the chemical reaction of the resin, which can result in a difference between the temperature inside the autoclave and the temperature of the composite material. Previous research assumed that the temperatures of the composite material and the autoclave were the same and analyzed to predict the residual stress and thermal deformation after manufacturing. However, these stresses and deformations depend on the temperature and degree of cure of the composite material. Therefore, this study verifies a thermal-chemical model analysis technique that takes into account the heat generated by the chemical reaction of the resin to accurately calculate the temperature and degree of cure. Additionally, case studies were conducted for different thicknesses to investigate whether this model exhibits similar trends across varying thicknesses.

Study of Cure Behavior of the External and Internal of Composite Parts (경화공정에 따른 복합재 부품 외부와 내부의 경화 거동 차이에 대한 연구)

  • Hyun, Dong Keun;Lee, Dong Seung;Shin, Do Hoon;Kim, Ji Hoon
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.302-308
    • /
    • 2020
  • We measured the thermal conductivity of composite materials manufactured by the autoclave and vacuum bag only processes and predicted the cure behavior of the external and internal of composite parts with a cure kinetics model. The temperature difference between the external and internal depends on the processes because of the change of thermal conductivity. In the autoclave process, the temperature and cure behavior of the internal were similar to those of the external because of the high thermal conductivity. However, the temperature of the internal of the vacuum bag only process was different from that of the external. The difference can influence the part quality and evacuation of air. Compression tests were performed to find the mechanical property using 0° unidirectional specimens. The composite of the vacuum bag only process was found to have a lower compressive strength than that of the autoclave process.

Localized Plastic Deformation in Heat-Resistant Alloy and Combined Two-Back Stress Hardening Model (내열합금 구조품에서의 국부적 소성변형과 이중후방응력 경화 모델)

  • Yun, Su-Jin;Lee, Sang-Yeun;Park, Dong-Chang;Yoon, Hyun-Gul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.82-88
    • /
    • 2011
  • In the present work, FEM analyses are carried out to investigate the fractures occurred within the structural part in the course of combustion experiment. The loss of structural integrity stems from the localized deformation and the damage induced due to a severe change in the thermal load. Moreover, the two-back stress evolution model is proposed using the Armstrong-Frederick and the Phillips' rules to depict the plastic deformation, and the continuum damage mechanics is also incorporated into the present model. It is noted that the present model is able to formulate a wide range of constitutive description with ease. The numerical results depicts that a severe strain localization and damage evolution can be obtained depending on the dominant back stress.