DOI QR코드

DOI QR Code

Study of Cure Behavior of the External and Internal of Composite Parts

경화공정에 따른 복합재 부품 외부와 내부의 경화 거동 차이에 대한 연구

  • Hyun, Dong Keun (Material & Process Technology, Korean Air Aero-Space Division) ;
  • Lee, Dong Seung (Material & Process Technology, Korean Air Aero-Space Division) ;
  • Shin, Do Hoon (Material & Process Technology, Korean Air Aero-Space Division) ;
  • Kim, Ji Hoon (School of Mechanical Engineering, Pusan National University)
  • Received : 2020.08.31
  • Accepted : 2020.10.05
  • Published : 2020.10.31

Abstract

We measured the thermal conductivity of composite materials manufactured by the autoclave and vacuum bag only processes and predicted the cure behavior of the external and internal of composite parts with a cure kinetics model. The temperature difference between the external and internal depends on the processes because of the change of thermal conductivity. In the autoclave process, the temperature and cure behavior of the internal were similar to those of the external because of the high thermal conductivity. However, the temperature of the internal of the vacuum bag only process was different from that of the external. The difference can influence the part quality and evacuation of air. Compression tests were performed to find the mechanical property using 0° unidirectional specimens. The composite of the vacuum bag only process was found to have a lower compressive strength than that of the autoclave process.

본 연구는 탄소 복합소재를 이용하여 오토클레이브와 진공백(Vacuum Bag Only) 공정으로 소재의 열전도 계수를구하고 경화 거동 모델을 통해 표면부와 내부의 경화 거동을 예측 및 비교하였다. 공정에 따른 열전도 계수의 변화로 인해 내부 온도가 표면부와 차이를 보였다. 오토클레이브 공정의 경우 높은 열전도 계수를 통하여 표면부와 내부의 온도는 거의 일치를 하였으며, 경화 거동 역시 유사하게 진행이 되었다. 하지만, 진공백 공정의 경우 표면부와 내부의 경화 거동이 많은 차이를 보였다. 이 차이는 부품 내부의 품질 및 공기 배출에 영향을 준다. 기계적 물성 차이를 확인하고자 0도 단방향 시편으로 압축시험을 수행하였고, 그 결과 진공백 성형이 조금 낮은 물성을 갖는다는 것을 확인하였다.

Keywords

References

  1. Hyun, D.K., Lee, B.E., Shin, D.H., and Kim, J.H., "Study of Cure Kinetics of Vacuum Bag Only Prepreg Using Differential Scanning Calorimetry", Composites Research, Vol. 33, No. 2, 2020, pp. 44-49. https://doi.org/10.7234/composres.2020.33.2.044
  2. Park, D.C., Kim, T.G., Kim, S.H., Shin, D.H., Kim, H.W., and Han, J.W., "Evaluation of Physical and Mecahnical Properties based on Liquid Composite Molding", Composites Research, Vol. 31, No. 6, 2018, pp. 304-310.
  3. Park, D.C., and Kim, Y.H., "Evaluation of Laminate Property using Caulplate Application", Composites Research, Vol. 29, No. 5, 2016, pp. 231-235. https://doi.org/10.7234/composres.2016.29.5.231
  4. Marsh, G., "Airbus Takes on Boeing with Reinforced Plastic A350 XWB", Reinforced Plastics, Vol. 51, No. 11, 2007, pp. 26-29. https://doi.org/10.1016/S0034-3617(07)70383-1
  5. Jerome, P.O.R.A., "Composite Materials in the Airbus A380From History to Future -", Proceeding of the 13 International Committee on Composite Materials, Beijing, China, 2001.
  6. Shin, D.H., Hyun, D.K., and Kim, Y.H., "Evaluation of Adhesive Failure Cases of L Joint Structures under Tensile Loading", International Journal of Modern Physics B, Vol. 32, No. 19, 2018, 1840058. https://doi.org/10.1142/S0217979218400581
  7. Koushyar, H., Effects of Variation in Autoclave Pressure, Cure Temperature, and Vacuum Application Time on the Porosity and Mechanical Properties of a Carbon/Epoxy Composite, Master Thesis, Wichita State University, USA, 2011.
  8. Hong, S.J., Song, M.H., Song, K.M., Baik, S.M., and Shin, S.J., "Fabrication and Evaluation of Integrated Composite Part for Aircraft using OoA Prepreg", Journal of the Korean society for Composite Materials, Vol. 29, No. 5, 2016, pp. 315-320.
  9. Danzi, M., "Manufacturing of Polymer Composites OOA Prepreg Technology", CMASLab, ETH Zurich, 2017.
  10. Harshe, R., "A Review on Advanced Out-of-Autoclave Composite Processing", Journal of the Indian Institute of Science, Vol. 95, No. 3, 2015, pp. 207-220.
  11. Cytec Engineered Materials. CYCOM 5320 Information Sheet.
  12. Kwon Hyuk, Out-Of-Autoclave Process using a Novel Semi-preg System for Aircraft Structures, Korea Aerospace University, Korea, 2014.
  13. Yang, H.C., "A Study of Thermal Conductivity for the Composite Materials", Composites Research, Vol. 8, No. 4, 1995, pp. 26-33.
  14. Nysten, B., and Issi, J.P., "Composites Based on Thermally Hyperconductive Carbon Fibers", Composites, Vol. 21, No. 4, 1990, pp. 339-343. https://doi.org/10.1016/0010-4361(90)90349-2
  15. Lee, S.E., Yoo, J.S., Kim, C.G., Hong, C.S., and Kim, K.S., "Prediction of Thermal Conductivity of Spatially Reinforced Composites", Composites Research, Vol. 14, No. 3, 2001, pp. 57-68.
  16. Bergman, T.L., Incropera, F.P., DeWitt, D.P., and Lavine, A.S., Fundamentals of Heat and Mass Transfer, 7th Edition. John Wiley & Sons, Incorporated, 2011.
  17. Cengel, Y., Heat and Mass Transfer. McGraw-Hill Education, 2011.
  18. Sweeting, R.D., and Liu, X.L., "Measurement of Thermal Conductivity for Fibre-reinforced Composites", Composites Part A, Vol. 35, No. 7-8, 2004, pp. 933-938. https://doi.org/10.1016/j.compositesa.2004.01.008
  19. Kratz, J., Hsiao, K., Fernlund, G., and Hubert, P., "Thermal Models for MTM45-1 and Cycom 5320 Out-of-autoclave Prepreg Resins", Journal of Composite Materials, Vol. 47, No. 3, 2013, pp. 341-352. https://doi.org/10.1177/0021998312440131
  20. Kim, D., Centea, T., and Nutt, S.R., "Out-time Effects on Cure Kinetics and Viscosity for an Out-of-autoclave (OOA) Prepreg: Modelling and Monitoring", Composites Science and Technology, Vol. 100, 2014, pp. 63-69. https://doi.org/10.1016/j.compscitech.2014.05.027
  21. ASTM D6641, Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using A Combined Loading Compression (CLC) Test Fixture, ASTM International, West Conshohocken, PA, 2016.