• Title/Summary/Keyword: 경계치문제

Search Result 188, Processing Time 0.024 seconds

Open Boundary Treatment of Nonlinear Waves in the Shallow Water Region by Boundary Element Method (경계요소법에 의한 파동장에 있어서 비선형파의 가상경계처리)

  • ;Kiyoshi Takikawa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.176-183
    • /
    • 1991
  • In this paper. boundary element method is applied to the analysis of nonlinear free surface wave. A particular concern is given to the treatment of the open boundaries at the in-flow boundary and out-flow boundary, which uses the mass-flux and energy-flux considering the continuity of fluid. By assuming the fluid to be inviscid and incompressible and the flow to be irrotational. the problem is formulated mathematically as a two-dimentional nonlinear problem in terms of a velocity potential. The equation(Laplace equation) and the boundary conditions are transformed into two boundary integral equations. Due to the nonlinearity of the problem. the incremental method is used for the numerical analysis. Numerical results obtained by the present boundary element method are compared with those obtained by the finite element method and also with experimental values.

  • PDF

Infinite Element for the Scaled Boundary Analysis of Initial Valued on-Homogeneous Elastic Half Space (초기값을 갖는 비동질무한영역의 해석을 위한 비례경계무한요소법)

  • Lee, Gye-Hee;Deeks, Andrew J.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.199-208
    • /
    • 2008
  • In this paper, to analyze the initial valued non-homogeneous elastic half space by the scaled boundary analysis, the infinite element approach was introduced. The free surface of the initial valued non-homogeneous elastic half space was modeled as a circumferential direction of boundary scaled boundary coordinate. The infinite element was used to represent the infinite length of the free surface. The initial value of material property(elastic modulus) was considered by the combination of the position of the scaling center and the power function of the radial direction. By use of the mapping type infinite element, the consistent elements formulation could be available. The performance and the feasibility of proposed approach are examined by two numerical examples.

Wave Responses and Ship Motions in a Harbor Excited by Long Waves(I) (항만내 파도응답과 계류선박의 운동해석(I))

  • I.H. Cho;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.38-47
    • /
    • 1992
  • The motion response of a ship moored in a rectangular harbor excited by long waves has been studied theoretically and experimentally. Within the framework of potential theory, matched asymptotic expansion techniques are exployed to analyze the problem. The fluid domain is divided into the ocean and the harbor regions for the analysis of wave response in a harbor without ship. The wave responses in both the ocean and the harbor sides are solved first independently in terms of Green's functions, which are the solutions of the Helmholtz equation satisfying appropriate boundary conditions. Slender body approximations are used to obtain the velocity jumps across the ship, which are associated with the symmetric motion modes of the ship. Unknowns contained in each solution are finally determined by matching at an intermediate zone between two neighboring regions. Theoretical results predict the ship motion qualitatively well. The main source of quantitative discrepancies is presumably due to real fluid effects such as separation at the harbor entrance and friction on harbor boundaries.

  • PDF

An Application of Time Discontinuous Finite Element Method for Heat Conduction Problems (열전도 방정식의 시간 불연속 유한요소법 적용)

  • Kim, Chi-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.87-92
    • /
    • 2008
  • A finite element method which is discontinuous in time is developed for the solution of the classical parabolic model of heat conduction problems. The approximations are continuous with respect to the space variables for each fixed time, but they admit discontinuities with respect to the time variable at each time step. The method is superior to other well-known approaches to these problems in that it allows a wider range of moving boundary value problems to be dealt with, such as are encountered in complex engineering operations like ground freezing. The method is applied to one-dimensional and two-dimensional heat conduction problems in this paper, although it could be extended to more higher dimensional problems. Several example problems are discussed and illustrated, and comparisons are made with analytical approaches where these can also be used.

Applicability of a Sharp-Interface Model in Simulating Saltwater Contents of a Pumping Well in Coastal Areas (모래상자 수리모형실험을 통한 경계면 모델의 관정 염도 모의실험)

  • Shi, Lei;Cui, Lei;Lee, Chan-Jong;Hong, Sung-Hoon;Park, Nam-Sik
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • In this work applicability of a sharp-interface model to well-scale problems is examined. In coastal areas one of the main concerns in groundwater development is saltwater intrusion. To determine the saltwater intrusion at a well one needs to evaluate the saltwater content from a pumping well. We conducted laboratory sand-tank experiments to determine if a sharp-interface model can simulate the saltwater content of a pumping well. Lateral saltwater intrusion experiments and freshwater lens experiments are conducted. A partially penetrating well and a fully penetrating well are used. Comparison between numerical results and observation results indicates that the sharp-interface model can determine saltwater contents reasonably well. We conclude that a sharp-interface model can be applied to well-scale groundwater flow problems in coastal areas.

Optimal Control of the Constrained Reservoir System by the Discrete Linear Tracking (이산형선형추적(離散型線型追跡)에 의한 제약저수지계(制約貯水池系)의 최적(最適) 제어)

  • Kwon, Oh Hun;Sonu, Jung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.1-12
    • /
    • 1985
  • The linear tracking theory has a great merit that its solution can be analytically obtained under the quadratic performance measure. However, this theory has not been applied to reservoir system operation yet, because the tracking assumes no boundness of the control and state vectors. This paper presents deriving the optimal control law and solving the Riccati equations for the discrete time horizon, and its application to the real system. And the additional necessary conditions for the saturated vectors of the control and/or state are also derived using the concept of the Pontryagin's minimum principle. The logic and its algorithm in this work are not so positive to give a general solution. In fact, it is a matter of modeling in terms of relative magnitude of disturbance and time-step size. However its application to the real environment of the Han river, which comprises six major reservoirs in series/parallel, demonstrated satisfactory results over 36 monthly stages.

  • PDF

A Potential-Based Panel Method for the Analysis of a 2-Dimensional Partially Cavitating Hydrofoil (양력판 이론에 의한 2차원 수중익의 부분 캐비티 문제 해석)

  • Chang-Sup,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.27-34
    • /
    • 1989
  • A potential-based panel method is formulated for the analysis of a partially cavitating 2-dimensional hydrofoil. The method employs dipoles and sources distributed on the foil surface to represent the lifting and cavity problems, respectively. The kinematic boundry condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the inner flow region of the foil. The dynamic boundary condition on the cavity surface is satisfied by requiring that the potential vary linearly, i.e., the velocity be constant. Green's theorem then results in a potential-based boundary value problem rather than a usual velocity-based formulation. With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with more improved accuracy than the zero-thickness hydrofoil theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. It was found that five iterations are necessary to obtain converged values, while only two iterations are sufficient for engineering purpose.

  • PDF

A Study on the Estimation of Temperature Distribution in Ultrasonic Hyperthermia by 1-Dimensional FEM Model (1차원 유한요소법 모델을 이용한 초음파 Hyperthermia의 온도분포에 관한 연구)

  • Ha, Jae-Gyu;Seong, Goeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.29-38
    • /
    • 1987
  • In clinical applications of hyperthermia, temperatures can be measured at only a few locations, whereas accurate temperature profiles need to be known for efficient therapy. For doing this, bio-heat transfer equation was modified into 1 dimensional 2 boundary value problem for simplicity and the efficiency of time, and solved by Galerkin's method. The results were then applied to annular array transducer for both the calculation of its axial temperature distribution and the estimation of temperature profiles from a few measured temperature data.

  • PDF

Separating Signals and Noises Using Mixture Model and Multiple Testing (혼합모델 및 다중 가설 검정을 이용한 신호와 잡음의 분류)

  • Park, Hae-Sang;Yoo, Si-Won;Jun, Chi-Hyuck
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.759-770
    • /
    • 2009
  • A problem of separating signals from noises is considered, when they are randomly mixed in the observation. It is assumed that the noise follows a Gaussian distribution and the signal follows a Gamma distribution, thus the underlying distribution of an observation will be a mixture of Gaussian and Gamma distributions. The parameters of the mixture model will be estimated from the EM algorithm. Then the signals and noises will be classified by a fixed threshold approach based on multiple testing using positive false discovery rate and Bayes error. The proposed method is applied to a real optical emission spectroscopy data for the quantitative analysis of inclusions. A simulation is carried out to compare the performance with the existing method using 3 sigma rule.

Finite Element Model Updating of Simple Beam Considering Boundary Conditions (경계조건을 고려한 단순보의 유한요소모델개선)

  • Kim, Se-Hoon;Park, Young-Soo;Kim, Nam-Gyu;Lee, Jong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.76-82
    • /
    • 2018
  • In this present study, in order to update the finite element model considering the boundary conditions, a method has been proposed. The conventional finite element model updating method, updates the finite element model by using the dynamic characteristics (natural frequency, mode shape) which can be estimated from the ambient vibration test. Therefore, prediction of the static response of an actual structure is difficult. Furthermore, accurate estimation of the physical properties is relatively hard. A novel method has been proposed to overcome the limitations of conventional method. Initially, the proposed method estimates the rotational spring constant of a finite element model using the deflection of structure and the rotational displacement of support measurements. The final updated finite element model is constructed by estimating the material properties of the structure using the finite element model with updated rotational spring constant and the dynamic characteristics of the structure. The proposed finite element model updating method is validated through numerical simulation and compared with the conventional finite element model updating method.