• Title/Summary/Keyword: 결빙시험

Search Result 32, Processing Time 0.023 seconds

A Study on the Parameters for Icing Airworthiness Flight Tests of Surion Military Helicopter (수리온 군용헬기의 결빙 감항인증 비행시험을 위한 파라미터 고찰)

  • Hur, Jang-Wook;Kim, Chan-Dong;Jang, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.526-532
    • /
    • 2015
  • In order to relieve limitation of flight operation under icing condition and verify its operation in adverse weather condition for Surion, military helicopter developed in Korea, airworthiness certification in icing condition is required. The process of Surion icing certification should be considered by implementation of four methods by step such as CFD analysis, simulated flight tests, artificial icing flight tests, and natural icing flight tests. For Surion icing flight tests, these are required 20~30 sorties and 20~23 hours in artificial icing condition; 20~30 sorties and 20~22 hours in natural icing condition. In addition, to proceed with efficient flight tests, it is necessary to implement artificial icing flight tests in LWC $0.5{\sim}1.0g/m^3;$ natural icing flight tests in less than LWC $0.5g/m^3$.

Development of Icing Simulation Device for Gas Turbine Icing Test (가스터빈 결빙시험용 결빙모사장치 개발)

  • Lee, Kyung-Jae;Yang, Soo-Seok;Lee, Dae-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.358-361
    • /
    • 2007
  • Most aircraft cruise in the stratosphere at which temperature is below $-50^{\circ}C$ md, as a result, the surface of aircraft can be iced up. Ice on the wing can change aerodynamic characteristic and results in the deterioration of its performance. Ice on the engine inlet increases the possibility of compressor blade damage and affects the performance and safety of the engine. This paper focused on the development of icing simulation device for analyzing effect of icing on engine performance. Icing simulation tests were conducted with a liquid air system and a icing simulation device and results show that icing could be simulated with this system.

  • PDF

Indirect Verification of the Icing Test Condition Using Ice Thickness (얼음두께를 이용한 결빙시험조건의 간접 확인기법)

  • Kim, Yoo Kyung;Park, Nameun;Choi, Gio
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.944-951
    • /
    • 2018
  • Artificial icing test and wind tunnel test can be performed to reduce the development period when a rotorcraft is required operation under icing situations. Artificial icing test of the KUH(Korean Utility Helicopter) was performed in advance to verify anti-icing and de-icing performance before natural icing test. Although high-precision sensor, the CCP(Cloud Combination Probe) is used to measure icing test condition parameters such as LWC(Liquid Water Content) and MVD(Median Volume Diameter), the measured values need to be verified in various methods due to the possibility of uncertainties which are the test atmosphere environment, sensor errors, and etc. The calculated LWC from the ice thickness cumulated on the fuselage of the KUH is compared to the measured value by CCP, and the results show the effective indirect method to check the test conditions.

Development of Icing Simulation Device for Gas Turbine Icing Test (가스터빈 결빙시험용 결빙모사장치 개발)

  • Lee, Gyeong-Jae;Lee, Jin-Geun;Go, Seong-Hui;Jeon, Yong-Min;Yang, Su-Seok;Lee, Dae-Seong
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.37-46
    • /
    • 2006
  • The outside environment is very severe while aircraft is cruising. Especially small particle of icing in cold air condition can have negative influence on aircraft performance. If ice particle is attached to leading edge of wing, it can change wing configuration and decrease flight quality. If icing particle is attached to inlet of engine, it can damage compressor blade and have negative influence to aircraft safety. We make icing simulation device with liquid air system for analyzing about variation of engine performance due to incoming of icing to engine.

  • PDF

Investigation of the Performance of Anti-Icing System of a Rotorcraft Engine Air Intake (회전익기 공기흡입구 주위 방빙장치 성능 해석)

  • Ahn, Gook-Bin;Jung, Ki-Young;Jung, Sung-Ki;Shin, Hun-Bum;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.253-260
    • /
    • 2013
  • Ice accretions on the surface around a rotorcraft air intake can deteriorate the safety of rotorcraft due to the engine performance degradation. The computational simulation based on modern CFD methods can be considered extremely valuable in analyzing icing effects before exact but very expensive icing wind tunnel or in-flight tests are conducted. In this study the range and amount of ice on the surface of anti-icing equipment are investigated for heat-on and heat-off modes. It is demonstrated through the computational prediction and the icing wind tunnel test that the maximum mass and height of ice of heat-on mode are reduced about 80% in comparison with those of heat-off mode.

A Study on Truncated Flapped Airfoil for Efficient Icing Wind Tunnel Test (효율적 결빙 시험을 위한 절단 익형 형상 연구)

  • Jung, Sung-Ki;Lee, Chang-Hoon;Nagdewe, Suryakant;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.481-486
    • /
    • 2011
  • The evaluation of supercooled water droplet impingement characteristics of full-scale aircraft components in wind tunnels under icing conditions has been severely limited by the relative size of the component and the test facility. The concept of truncated airfoil sections has been suggested in order to extend the operational range of icing tunnels. With proper deflection of the small trailing-edge flap on the truncated airfoil the local pressure distribution may remain very close to that of the full-scale airfoil. In this study the shape of a truncated flapped airfoil is investigated for various deflection angles. To validate the truncated flapped airfoils, air flow and collection efficiency over the truncated airfoil are compared with the results of the full-scale airfoil obtained from the state-of-the-art icing simulation code.

Evaluation Method and Evaluation of Anti-icing Coating Material (결빙방지 코팅소재 평가법 및 특성평가)

  • Jo, Hui-Jae;Choe, Jun-Hyeon;Jeong, Yong-Chan;Lee, Su-Yeol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.40-40
    • /
    • 2018
  • 강원도 혹한지역에 설치된 ACSR cable(Aluminium Conductor Steel Reinforced, 강심 알루미늄 연선)에 겔러핑(Galloping), 슬릿점핑(Sleet jumping) 등 빙설해로 인한 단전 및 단락 사고가 발생하여 전력망 운영에 심각한 문제를 초래하고 있다. 특히, 빙설해로 인한 정전사고는 전기 품질의 저하 뿐만 아니라, 국지적으로 발생하여 광범위하게 영향을 미치기 때문에 이에 대한 대응 및 예방기술이 요구되고 있다. 본 연구에서는 ACSR cable의 원 소재인 알루미늄 합금(Al 6061)을 대상으로 낮은 표면에너지를 갖는 결빙방지 코팅소재로 표면처리하여 결빙방지 성능을 향상하고자 하였다. 코팅소재와 얼음과의 접합특성은 결빙접합 특성 시험기를 사용하여 정량적으로 측정하였으며 시험기의 신뢰성 확보를 위해 FEM Modeling을 수행하였다. 결빙특성 지표인 ARF(Adhesion reduction factor)를 적용하여 소재별 결빙방지 효과를 비교 평가하였다. 코팅소재는 현재 해외 국내에서 상용화되고 있는 소수성, 초소수성 소재를 선정하였으며, 결빙접합강도와 매우 밀접하게 연관되어 있는 표면 에너지, 표면 거칠기와의 상관관계를 분석함으로써 결빙방지 코팅소재의 적합성을 평가하였다. 본 연구에서 개발한 상온 경화형 실리콘 러버 코팅소재는 원 소재 Al 대비 약 8~9배 낮은 탁월한 방빙성(Anti-icing) 효과를 나타내었으며, 내구성 또한 상용소재 대비 우수한 특성을 나타내었다.

  • PDF

Evaluation method of icing characteristics for ACSR cable in transmission line by 3D scan (3D 스캔을 활용한 송전선로 ACSR 케이블 결빙특성 평가)

  • Choe, Jun-Hyeon;Jo, Hui-Jae;Jeong, Yong-Chan;Lee, Su-Yeol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.43.2-43.2
    • /
    • 2018
  • 송전 및 배전선 선로에 사용되는 핵심 부품인 ACSR (Aluminum Conductor Steel Reinforced, 강심 알루미늄 연선) cable은 우수한 기계적 성질, 가벼운 중량, 내부식성 특징을 가지고 있어 송전 및 배전선 선로에 핵심 부품으로 사용된다. 하지만, 국내외 혹한 다설 지역에 설치된 ACSR cable에서 빙설해로 인한 단락 또는 지락 사고가 지속적으로 발생하고 있다. 빙설해에 의한 송전선로의 고장은 급격한 전압 강하로 인해 전기 품질에 큰 영향을 주어 민원제기의 주요 원인이 되며, 고장의 파급효과가 국지적으로 발생하지 않고 광범위하게 발생하는 특징이 있기 때문에 이에 대한 대응이 필요한 실정이다. 이러한 문제를 해결하기 위해 ACSR cable의 주 소재인 알루미늄에 대한 판상(Plate) 결빙강도 파악 및 결빙방지 소재개발 연구가 국내외에서 활발히 진행 중이나, 실제 원형의 전선다발이 나선형으로 감겨있는 구조의 ACSR cable 결빙 접합강도를 시험을 통해서 명확히 제시한 연구결과는 아직 보고된 바 없다. 본 연구에서는 실제 송전용 ACSR cable을 대상으로 얼음 간의 주 전단 응력, 파단에너지 등의 결빙특성을 정량적으로 측정할 수 있는 3D 스캔을 활용한 결빙특성 평가시험기를 개발하고, 345kV급 ACSR cable에 대한 결빙특성을 평가결과를 제시하였다. 또한 ACSR cable에 현재 상용화되고 있는 결빙방지 코팅소재를 적용함으로써 코팅소재의 적합성을 ARF(Adhesion reduction factor) 지표를 통해서 비교 평가한 결과를 포함한다.

  • PDF

Scaling Methods for Icing Wind Tunnel Test (결빙 풍동시험을 위한 스케일링 기법 연구)

  • An, Young-Gab;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.146-156
    • /
    • 2012
  • In-flight icing remains as one of the most persistent hazards for aircraft operations. The effect of icing on aircraft performance and safety has to be evaluated during the development and airworthiness certification process. The scaling method is a procedure to determine the scaled test conditions in icing wind tunnels in order to produce the same result as when the reference model is exposed to the desired cloud conditions. In this study, a scaling program is developed to provide an easy-to-use tool to the aero-icing community. The Olsen and Ruff 4th methods are employed for this purpose and the velocity is calculated by matching the dimensionless Weber number. To validate the program, the results are compared with the NASA scaling results. The scaling examples based on FAR (Federal Aviation Regulation) Part 25 Appendix C are also presented. Finally, a validation study using a state-of-the-art icing simulation code FENSAP-ICE is presented.

A Study on the Positioning of Ice Sensors for Assessing Airworthiness of Military Helicopter (군용헬기 결빙 감항인증 시험을 위한 결빙센서 위치선정에 관한 연구)

  • Kim, Chan Dong;Hur, Jang Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.495-501
    • /
    • 2016
  • The measurement of icing conditions needs to be carried out accurately by the ice detector system of an aircraft. Ice detector systems should be installed in locations not affected by backwash, rotor downwash or moving doors or other equipment. Various analyses were carried out in order to find the proper locations sufficiently far from these interfering effects. In this study, the optimum position of the ice detector was assessed using computer simulation, with respect to different flight modes, flow velocities and the amount and distribution of liquid water around the sensor.