A Study on the Parameters for Icing Airworthiness Flight Tests of Surion Military Helicopter

수리온 군용헬기의 결빙 감항인증 비행시험을 위한 파라미터 고찰

  • Hur, Jang-Wook (Department of Mechanical System Engineering, Kumoh National Institute of Technology) ;
  • Kim, Chan-Dong (Department of Mechanical System Engineering, Kumoh National Institute of Technology) ;
  • Jang, Jae-Sang (Korea Aerospace Industries)
  • Received : 2015.01.19
  • Accepted : 2015.05.13
  • Published : 2015.06.01


In order to relieve limitation of flight operation under icing condition and verify its operation in adverse weather condition for Surion, military helicopter developed in Korea, airworthiness certification in icing condition is required. The process of Surion icing certification should be considered by implementation of four methods by step such as CFD analysis, simulated flight tests, artificial icing flight tests, and natural icing flight tests. For Surion icing flight tests, these are required 20~30 sorties and 20~23 hours in artificial icing condition; 20~30 sorties and 20~22 hours in natural icing condition. In addition, to proceed with efficient flight tests, it is necessary to implement artificial icing flight tests in LWC $0.5{\sim}1.0g/m^3;$ natural icing flight tests in less than LWC $0.5g/m^3$.

국내개발 헬기인 수리온의 악기상 시 운용능력을 입증하고 결빙하 운용 제한 사항을 해제하기 위하여 결빙 감항인증이 요구되고 있다. 군용헬기인 수리온의 결빙 감항인증 절차는 유사 무기체계인 UH-60과 AH-64의 사례와 S/W 기술의 성숙도를 보았을 때, 전산해석${\rightarrow}$모의결빙형상 비행시험${\rightarrow}$인공 결빙 비행시험${\rightarrow}$자연 결빙 비행시험의 4가지 방법에 의한 단계화된 추진이 고려되고 있다. 수리온의 최적 비행시험 소티와 비행시간은 인공 결빙 비행시험 20~30소티 및 20~23시간과 자연 결빙 비행시험 20~30소티 및 20~22시간이 요구되며, 효율적인 결빙 감항인증 비행시험을 위해서는 LWC $0.5{\sim}1.0g/m^3$범위의 대기온도 조건은 인공 결빙 비행시험을 추진하고, LWC $0.5g/m^3$이하의 대기온도 조건에서는 자연 결빙 비행시험이 필요하다.



  1. Hong D. K. and Yee K. J., "Comparison of Airworthiness Certification System between Korea and U.S.", Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 36, No. 3, 2008, pp. 298-305.
  2. Kim Y. C., "A Verification of Threshold of the Aircraft Turbulence Index and Icing Index Using PIREPS and KWRF on Korean Peninsula", Journal of the Korean Meteorological Society, Vol. 19, No. 3, 2011, pp. 54-60.
  3. Hur J. W. and Shin B. C., "A Study on the Korea Weather Environment for Icing Airworthiness of Military Helicopter", Journal of the Korea Institute of Military Science and Technology, Vol. 17, No. 3, 2014, pp.304-310.
  4. An Y. G. and Rho S. M., "Scaling Methods for Icing Wind Tunnel Test", Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 2, 2012, pp. 146-156.
  5. Ben C. B. and Robert J. F., "Certification of the Sikorsky S-92A Helicopter Ice Protection System : Meteorological Aspects of Tanker Tests and Natural Icing Flights", SAE International, 2007-01-3329, pp. 1-7.
  6. Robert L., "Certification/Qualification of an Aircraft for Flight in Known Icing Conditions", SAE Aircraft & Engine Icing International Conference-Icing Certification Part III, 2007. pp. 1-30.
  7. Robert J. F., Randall K. B. and Thomas H. B., "Role of Wind Tunnels and Computer codes in the certification and Qualification of Rotorcraft for Flight in Forecast Icing", NASA Technical Memorandum 106747, 1994, pp. 1-35
  8. Aircraft Ice Protection-Appendix E, AC20-73A, Federal Aviation Administration, 2006, pp. 1-41.
  9. KUH : Natural Icing Flight Test Support, NTI, 2011, pp. 9-10.
  10. Hur J. W., "Mckinley Facility Visit Report", KAI, 2013. pp.1-7.
  11. Aircraft Natural/Artificial Icing, TOP 7-3-537, US Army Aviation Technical Test Center, 2009, pp. 14-15.
  12. Marvin L. H., "Artificial and Natural Icing tests of UH-60A Helicopter", US Army Research and Technology, 1980, pp. 1-14.
  13. James M. A., "Artificial and Natural Icing Tests of AH-64(Phase II)", US Army Research & Technology, 1987, pp. 4-11.