• Title/Summary/Keyword: 겔

Search Result 1,264, Processing Time 0.022 seconds

Tuning the rheological properties of colloidal microgel controlled with degree of cross-links (가교도가 제어된 콜로이드 마이크로겔의 유변학적 물성 분석)

  • Han, Sa Ra;Shin, Sung Gyu;Oh, Seung Joo;Cho, Sung Woo;Jung, Naseul;Kang, Bu Kyeung;Jeong, Jae Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.645-655
    • /
    • 2019
  • In this study, colloidal microgel with viscoelasticity were prepared by using dispersion containing physical crosslinking agents and microgels with various strengths depending on the degree of cross-links.As the chemical crosslinking agent PEGDA400 content increased, hydrogels have various physical properties the swelling ratio decreased from $2.0{\times}10^4%$ to $6.0{\times}10^3%$ and increased viscosity by about 60%. The colloidal microgel was prepared with micro hydrogel grinded to $100{\mu}m$ size and the rheological behavior was confirmed with physical cross linking agent. A colloidal microgel having various viscosities was prepared by controlling starch and alginate based on micro-hydrogel containing 0.75% (w/v) of PEGDA400. In conclusion, these results would be highly useful for applying as a product that can give various physical properties to the colloidal suspensions, cosmetics, paint, and food industry.

Polymer-Ceramic Composite Gel Polymer Electrolyte for High-Electrochemical-Performance Lithium-Ion Batteries (고성능 리튬 이온전지를 위한 폴리머-세라믹 복합 겔 고분자 전해질)

  • Jang, So-Hyun;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.4
    • /
    • pp.123-128
    • /
    • 2016
  • In this study, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)-based gel polymer electrolyte incorporating nano-size $Al_2O_3$ ceramic particle was prepared by electrospinning. The gel polymer electrolyte (GPE) incorporated with $Al_2O_3$ ceramic particle showed higher ionic conductivity of $9.5{\times}10^{-2}Scm^{-1}$ than pure PVdF-HFP GPE without ceramic particle and improved the electrochemical stability up to 5.2 V. The GPEs were assembled with $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (NMC) cathode for electrochemical test. The GPE batteries at 0.1 C-rate delivered $168.2mAh\;g^{-1}$ for pure GPE and $189.6mAh\;g^{-1}$ for hybrid GPE, respectively. Therefore, the incorporation of high dielectric constant ceramic particle will be good strategy to enhance the stability and electrochemical properties of lithium ion gel polymer batteries.

Preparation of Semi-solid Fibroin Gel and its Flow Property (반고형 피브로인 단백질 겔의 제조 및 유동특성)

  • Hur, Won;Lee, Shin-Young
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.563-569
    • /
    • 2009
  • Fibroin is an insoluble structural protein from Bombyx mori. It can be solubilized by dissolving in a hot $CaCl_2$ solution and subsequent dialysis. The aqueous solution is unstable and a transition from aqueous fibroin molecules rich in random coil is undergo to one rich in $\beta$-sheet content, resulting in hydrogelation. However, fibroin gel is so fragile and plastic that its mechanical property should be reformed for various applications. In this report, a semi-solid form of fibroin gel was prepared using glycerol and ethanol and was investigated to analyze their flow properties. A fibroin gel with 80% glycerol showed pseudoplastic and thixotropic properties. The square root of its yield stress varied linearly with fibroin concentration and it extrapolated to zero shear stress at 0.2% fibroin. A fibroin gel with 40% ethanol was shown to be highly thixotropic but its shear-thinning behavior was only observed above a certain level of shear rate. Its pseudoplasticity was restored by a high rate of shear stress.

Development of Lecithin Organogel to Improve Solubility of Genistein (레시틴 오가노겔을 이용한 난용성 제니스테인의 용해도 향상)

  • Lee, Su Jin;Kim, Jung A;Kang, Nae Gyu;Park, Sun Gyoo;Lee, Cheon Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.3
    • /
    • pp.201-208
    • /
    • 2015
  • Organogels are semi-solid systems that consist of an apolar solvent as the liquid phase within a three-dimensional networked structure. In this study, we developed a stable and skin penetration-enhanced Lecithin Organogel (LO) containing genistein, which is one of the poorly soluble active ingredients in both polar and apolar phase. After screening of various components (type of gelators, organic and aqueous phase), hydrogenated lecithin (HL), sunflower oil (SO), dipropylene glycol (DPG), and polyethylene glycol (PEG) were mainly used in this formulation. Phase ternary diagram was employed for optimization of the composition in the LO. The formulated LO were evaluated for its organoleptic characteristics, stability, pH, rheology, phase transition temperatures, microscopic analysis and skin penetration. The optimized stable LO system can be utilized as an effective and stable cosmetic formulation that can carry poorly soluble active ingredients at high concentration for topical dermal delivery.

Preparation of Gel Polymer Electrolyte Membranes of Polyvinyl Alcohol and Poly (acrylic acid) for Zn Air Batteries (아연공기전지를 위한 Polyvinyl Alcohol과 Poly (acrylic acid)의 블랜드를 이용한 겔 고분자 전해질막의 제조)

  • Kim, Chanhoon;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.208-215
    • /
    • 2012
  • Gel polymer electrolyte membranes were prepared from blends of polyvinyl alcohol (PVA) and poly (acrylic acid) (PAA), by solution-cast technique. The PAA content in the blend varied from 30 to 80 wt%. With the gel polymer electrolyte membranes, Zn air batteries were fabricated. The gel polymer electrolyte membranes were characterized by means of stress-strain test, impedance test. The Zn air batteries were tested by current interrupt method and galvanostatic discharge method. The tensile strength and tensile modulus decreased with increasing PAA content in the gel polymer electrolyte membrane. On the other hand, the ionic conductivity increased with increasing PAA content. The effect of ionic conductivity trend of the gel polymer electrolyte membrane in the Zn air battery was confirmed through current interrupt method and galvanostatic discharge method experiments. The battery with higher PAA content gel polymer electrolyte membrane showed lower IR drop and higher discharge capacity.

Tuning the Stiffness of Dermal Fibroblast-encapsulating Collagen Gel by Sequential Cross-linking (연속가교를 통한 피부 진피세포 담지 콜라겐 겔의 강도 제어)

  • Jung, Mun-Hee;Shin, Sung Gyu;Lim, Jun Woo;Han, Sa Ra;Kim, Hee-Jin;Jeong, Jae Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.23-29
    • /
    • 2018
  • In this study, sequential cross-linked collagen gels were successfully prepared with collagen, which is biomaterial, and acrylamide (AAm), which is a synthetic monomer. The elastic moduli (E) of cross-linked collagen gels were increased from 1.5 to 3.0 kPa by varying of AAm concentrations. In addition, human dermal fibroblasts were encapsulated into the porous pores introduced into the gels, and cell growth and behavior were investigated. Increasing E of the gels led to decreases in cell growth rate, while the cellular glycosaminoglycan (GAG) production level was elevated. Overall, the growth and cellular activity of skin cells were influenced by the extracellular matrix properties of the collagen gels. In conclusion, these results will be highly useful for designing reconstructive skins and various tissue engineering researches.

Synthesis and Characterization of Comb-Type Grafted Polymer Hydrogels with Low Temperature Sensitivity (저온 감열 특성을 가지는 Comb-Type Grafted Polymer Hydrogels의 합성 및 특성평가)

  • Taek Kyu Jung;Sung Soo Kim;Byung Cheol Shin
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.1
    • /
    • pp.59-66
    • /
    • 2003
  • The comb-type grafted polymer hydrogels, which composed of N-isopropylacrylamide monomer and oligo(N-isopropylacrylamide-co-tert-butylacrylamide) [oligo(NIPAAm-co-t-BAM)], were synthesized by redox polymerization in 5~10% methanol aqueous solution using ammonium peroxodisulfate (APS) at 4 oC for 24h. The lower critical solution temperatures (LCSTs) of the comb-type grafted hydrogels were decreased with increase of t-BAM content in the grafted copolymer. We observed the effect of crosslinker and concentration of oligo(NIPAAm-co-t-BAM) on the shrinking/swelling ratio of hydrogels. Changes of shrinking/swelling ratio were decreased with increase of concentration of crosslinker. The increase of grafted oligo(NIPAAm-co-t-BAM) in the hydrogel shows an fast changes of shrinking/ swelling rate. The comb-type grafted hydrogels are expected to be valuable for the sensing materials of time-temperature labels(TTLs).

Gel and Texture Properties of Fish-meat Gel Prepared with Pagrus major in Comparison to Different Grades of Alaska Pollock (도미를 활용하여 제조한 연제품의 겔 및 texture 특성)

  • Gao, Ya;Oh, Jung Hwan;Karadeniz, Fatih;Lee, Seul-Gi;Kim, Hyung Kwang;Kim, Se Jong;Jung, Jun Mo;Cheon, Ji Hyeon;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.955-962
    • /
    • 2016
  • Fish-meat gel is an intermediate product used in a variety of surimi-based seafood. One of the most-used raw materials of fish-meat gel is Alaska Pollock due to its high-quality meat in terms of gel strength and texture. However, increasing demand for fish-meat gel, along with overexploitation of the wild catch Alaska Pollock, has put the industry in need of low-cost sustainable alternative sources for fish-meat gel. Pagrus major (PM) is a widely aquacultured fish known for having white meat that is low in fat. The current study compares the quality of fish-meat gel prepared from aquacultured PM to that of high and mid-grade Alaska Pollock fish-meat gel. Gels were compared in terms of gel strength, texture, color, and protein pattern. Results indicated that fish-meat gels prepared from PM were superior to Alaska Pollock fish-meat gels with regard to gel strength, hardness, springiness, chewiness, cutting strength, and breaking force. In addition, although not matching in quality, PM exhibited a cohesiveness, whiteness, and expressible moisture content comparable to Alaska Pollock of both grades. Protein pattern analysis also showed that PM and Alaska Pollock fish-meat gels had similar protein profiles before and after gel preparation. Therefore, P. major is suggested as a potential substitute for Alaska Pollock in fish-meat gel production.

Gelation of Rapeseed Protein Induced with Microbial Transglutaminase (미생물성 Transglutaminase에 의한 유채단백질의 겔화)

  • Hyun, Eun-Hee;Kang, Yeung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1262-1267
    • /
    • 1999
  • Optimum reaction conditions for gel formation of rapeseed, Brassica napus, protein catalyzed by microbial TGase(transglutaminase) were evaluated by measuring breaking strength and deformation of gel. The polymerization of the protein gel was ascertained by SDS-PAGE and content of GL crosslinking$[{\varepsilon}-({\gamma}-glutamyl)lysine]$. In the reaction between rapeseed protein and TGase at $45^{\circ}C$ for 60 min, the breaking strength and deformation of the gel was the maximum at the ratio of 1 : 40 of enzyme to substrate. 10%(w/v) of rapeseed protein concentrate was optimum for gel production. The maximum breaking strength and deformation was shown at $45^{\circ}C$ The breaking strength increased linearly up to 90 min of the reaction time and remained unchanged. The breaking strength and deformation by TGase treatment was pH dependent and pH 7 was optimum for 10% rapeseed protein solution. SDS-PAGE analysis indicated that new band of highmolecular polymers were formed by the enzyme reaction, with disappearing the original bands of rapeseed protein. According to HPLC analysis. the content of GL crosslinking was increased from 0 to $7.14\;{\mu}mol/g$ gel for 90 min of the reaction time.

  • PDF

Preparation of PVA/Graphene Oxide/Fe3O4 Magnetic Microgels as an Effective Adsorbent for Dye Removal (폴리바이닐알코올/그래핀 옥사이드/산화철 자성 마이크로겔을 이용한 염료 제거)

  • Go, Seongmoon;Kim, Keunseong;Wi, Eunsol;Park, Rae-Su;Jung, Hong-Ryun;Yun, Changhun;Chang, Mincheol
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.98-105
    • /
    • 2022
  • In this study, polyvinyl alcohol (PVA)/graphene oxide (GO)/iron oxide (Fe3O4) magnetic microgels were prepared using a microfluidic approach and the dye adsorption capacity of the microgels was confirmed. The adsorption capacity (qe) of the gels was evaluated by varying the dye concentration, pH, and contact time with the microgels. The dyes used in this work were methylene blue (MB), crystal violet (CV), and malachite green (MG), and microgels showed the highest adsorption capacity (191.1 mg/g) in methylene blue. The microgels exhibited the highest adsorption capacity in the dye aqueous solution at pH 10 due to the presence of atomic nitrogen ions (N+) on the dye molecules. The adsorption isotherm studies revealed that the Langmuir isotherm is the best fit isotherm model for the dye adsorption on the microgels, indicative of monolayer adsorption. The kinetic analysis exhibited that the pseudo-second order model fits better than the pseudo-first order model, confirming that the adsorption process is chemisorption. In addition, the magnetic microgels showed good reusability and recovery efficiency. It was confirmed that the adsorption capacity of the gels maintains more than 70% of the initial capacity after 5 times of cycle experiments.