DOI QR코드

DOI QR Code

Tuning the Stiffness of Dermal Fibroblast-encapsulating Collagen Gel by Sequential Cross-linking

연속가교를 통한 피부 진피세포 담지 콜라겐 겔의 강도 제어

  • Jung, Mun-Hee (Dept. of Beauty Industry, Soongsil University) ;
  • Shin, Sung Gyu (Dept. of Chemical Engineering, Soongsil University) ;
  • Lim, Jun Woo (Dept. of Chemical Engineering, Soongsil University) ;
  • Han, Sa Ra (Dept. of Chemical Engineering, Soongsil University) ;
  • Kim, Hee-Jin (Dept. of Chemical Engineering, Soongsil University) ;
  • Jeong, Jae Hyun (Dept. of Chemical Engineering, Soongsil University)
  • 정문희 (숭실대학교 뷰티산업학과) ;
  • 신성규 (숭실대학교 화학공학과) ;
  • 임준우 (숭실대학교 화학공학과) ;
  • 한사라 (숭실대학교 화학공학과) ;
  • 김희진 (숭실대학교 화학공학과) ;
  • 정재현 (숭실대학교 화학공학과)
  • Received : 2018.01.22
  • Accepted : 2018.03.12
  • Published : 2018.03.31

Abstract

In this study, sequential cross-linked collagen gels were successfully prepared with collagen, which is biomaterial, and acrylamide (AAm), which is a synthetic monomer. The elastic moduli (E) of cross-linked collagen gels were increased from 1.5 to 3.0 kPa by varying of AAm concentrations. In addition, human dermal fibroblasts were encapsulated into the porous pores introduced into the gels, and cell growth and behavior were investigated. Increasing E of the gels led to decreases in cell growth rate, while the cellular glycosaminoglycan (GAG) production level was elevated. Overall, the growth and cellular activity of skin cells were influenced by the extracellular matrix properties of the collagen gels. In conclusion, these results will be highly useful for designing reconstructive skins and various tissue engineering researches.

본 연구에서는 생체재료인 콜라겐과 합성 단량체인 아크릴아마이드를 연속가교 하여, 하이드로젤 기반의 콜라겐 겔을 제조하였다. 아크릴아마이드의 함량 및 가교 정도에 따라, 1.5 kPa에서 3.0 kPa까지 다양한 강도(E)를 갖는 콜라겐 겔을 제조할 수 있었다. 또한, 콜라겐 겔에 다공성 기공을 도입하고 진피세포를 내부에 담지하여, 겔 강도에 따른 세포 성장 및 거동을 확인하였다. 상대적으로 강도가 높은 겔에서 세포의 성장은 느렸지만 GAG 합성 및 분비는 활성화되는 것을 확인하였다. 콜라겐 겔의 기계적 물성에 따라 세포의 성장 및 활성이 영향을 받는 것을 알 수 있었으며, 이는 향후 인공피부 제조 및 응용, 나아가 다양한 조직공학 분야의 기반 기술로 활용 가능하리라 기대된다.

Keywords

References

  1. E. Ruoslahti and M. D. Pierschbacher, New perspectives in cell adhesion: RGD and integrins, Science, 238, 491 (1987). https://doi.org/10.1126/science.2821619
  2. B. Geiger and A. Bershadsky, Exploring the neighborhood: adhesion-coupled cell mechanosensors, Cell, 110, 139 (2002). https://doi.org/10.1016/S0092-8674(02)00831-0
  3. M. Chiquet, Regulation of extracellular matrix gene expression by mechanical stress, Matrix Biol., 18, 417 (1999). https://doi.org/10.1016/S0945-053X(99)00039-6
  4. J. H. Jeong, Y. Liang, M. Jang, C. Cha, C. Chu, H. Lee, W. Jung, J. W. Kim, S. T. Boppart, and H. J. Kong, Stiffness-modulated water retention and neovascularization of dermal fibroblast-encapsulating collagen gel, Tissue Engineering, Part A, 19(11), 1275 (2013). https://doi.org/10.1089/ten.tea.2012.0230
  5. Y. Liang, J. H. Jeong, R. J. DeVolder, C. Cha, F. Wang, Y. W. Tong, and H. J. Kong, A Cell-instructive hydrogel to regulate malignancy of 3D tumor spheroids via rigidity, Biomaterials, 32, 9308 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.045
  6. M. W. Tibbitt and K. S. Anseth, Hydrogels as extracellular matrix mimics for 3D cell culture, Biotechnol. Bioeng., 103, 665 (2009).
  7. J. M. Ruijgrok, J. R. De Wijn, and M. E. Boon, Glutaraldehyde crosslinking of collagen: effects of time, temperature, concentration and presoaking as measured by shrinkage temperature, Clin. Mater., 17, 23 (1994). https://doi.org/10.1016/0267-6605(94)90044-2
  8. W. Paul, The quantitative measurement of alcian blue glycosaminoglycan complexes, Biochem. J., 343, 13 (1973).
  9. J. H. Jeong, J. J. Schmidt, C. Cha, and H. J. Kong, Tuning responsiveness and structural integrity of a pH responsive hydrogel using a poly (ethylene glycol) cross-linker, Soft Matter, 6, 3930 (2010). https://doi.org/10.1039/c0sm00094a
  10. T. Tai-Lan, C. K. Lia, S. David, E. N. Marcel, and C. David, Dermal fibroblasts activate keratinocyte outgrowth on collagen gels, J. Cell. Sci., 107, 2285 (1994).
  11. P. Whiteman, The quantitative measurement of alcian blue glycosaminoglycan complexes, Biochemical Journal, 131(2), 343 (1973). https://doi.org/10.1042/bj1310343
  12. J. Kim, H. Li, H. S. Jeong, H. Y. Yun, K. J. Baek, N. S. Kwon, H. R. Choi, K. C. Park, and D. S. Kim, Assessment of skin toxicity using skin equivalents containing cervi cornus colla, J. Soc. Cosmet. Sci. Korea, 39(1), 31 (2013). https://doi.org/10.15230/SCSK.2013.39.1.031
  13. Y. Ahn, C-Y. Lee, S. Baek, T. Kim, P. Kim, S. Lee, D. Min, H. Lee, J. Kim, and W. G. Jung, Quantitative monitoring of laser-treated engineering skin using optical coherence tomography, Biomedical Optics Express., 7(3), 1030 (2016). https://doi.org/10.1364/BOE.7.001030
  14. S. W. Cho, S. G. Shin, H. J. Kim, S. R. Han, and J. H. Jeong, Self-folding of multi-layered hydrogel designed for biological machine, Polym. Korea, 41(2), 346 (2017). https://doi.org/10.7317/pk.2017.41.2.346