Browse > Article
http://dx.doi.org/10.12925/jkocs.2019.36.2.645

Tuning the rheological properties of colloidal microgel controlled with degree of cross-links  

Han, Sa Ra (Department of Chemical Engineering, Soongsil University)
Shin, Sung Gyu (Department of Chemical Engineering, Soongsil University)
Oh, Seung Joo (Department of Chemical Engineering, Soongsil University)
Cho, Sung Woo (Department of Chemical Engineering, Soongsil University)
Jung, Naseul (Department of Chemical Engineering, Soongsil University)
Kang, Bu Kyeung (Dalin cosmetic)
Jeong, Jae Hyun (Department of Chemical Engineering, Soongsil University)
Publication Information
Journal of the Korean Applied Science and Technology / v.36, no.2, 2019 , pp. 645-655 More about this Journal
Abstract
In this study, colloidal microgel with viscoelasticity were prepared by using dispersion containing physical crosslinking agents and microgels with various strengths depending on the degree of cross-links.As the chemical crosslinking agent PEGDA400 content increased, hydrogels have various physical properties the swelling ratio decreased from $2.0{\times}10^4%$ to $6.0{\times}10^3%$ and increased viscosity by about 60%. The colloidal microgel was prepared with micro hydrogel grinded to $100{\mu}m$ size and the rheological behavior was confirmed with physical cross linking agent. A colloidal microgel having various viscosities was prepared by controlling starch and alginate based on micro-hydrogel containing 0.75% (w/v) of PEGDA400. In conclusion, these results would be highly useful for applying as a product that can give various physical properties to the colloidal suspensions, cosmetics, paint, and food industry.
Keywords
colloidal microgel; elastic modulus; swelling ratio; viscoelastic; physical crosslinks;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H.A. Barnes, K. Walters, "The yield stress myth?", Rheol. Acta., Vol. 24, No. 4, pp. 323-326 (1985).   DOI
2 R. V. Priscilla, M. C. Camila, S. F. Bruno, F. N. Monica, R. Paulo, "Rheological characterization of Carbopol dispersions in water and in water/glycerol solutions", Fluids, Vol. 4, No. 1, pp. 1-20, (2019).   DOI
3 G. Astarita, "Letter to the Editor: The engineering reality of the yield stress", J. Rheol., Vol. 34, No. 2, pp. 275-277, (1990).   DOI
4 J.A. Kerres, "Development of ionomer membranes for fuel cells", J. Membr. Sci., Vol. 185, No. 1, pp. 3-27, (2001).   DOI
5 M. Guo, B. Liu, Z. Liu, L. Wang, Z. Jiang, "Novel acid-base moleculesenhanced blends/ copolymers for fuel cell applications", Journal of Power Sources, Vol. 189, No. 2, pp. 894-901, (2009).   DOI
6 D.H. Kang, D. Kim, "Modification of nafion membranes by incorporation of cationic polymer for reduction of methanol permeability", Korean J. Chem. Eng., Vol. 24, No. 6, pp. 1101-1105, (2007).   DOI
7 A. M. Putz, T. I. Burghelea, "The solid-fluid transition in a yield stress shear thinning physical gel", Rheol. Acta., Vol. 48, No. 6, pp. 673-689, (2009).   DOI
8 N. W. Taylor, E. B. Bagley, "Dispersions or solutions? A mechanism for certain thickening agents",J. Appl. Polym. Sci., Vol. 18, No. 9, pp. 2747-2761, (1974).   DOI
9 P. Moller, A. Fall, V. Chikkadi, D. Derks, D. Bonn, "An attempt to categorize yield stress fluid behavior", Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., Vol. 367, No. 1909, pp. 5139-5155, (2009).   DOI
10 J. Y. Kim, J. Y. Song, E. J. Lee, S. K. Park, "Rheological properties and microstructures of Carbopol gel network system", Colloid and Polym. Sci., Vol. 281, No. 7, pp. 614-623, (2003).   DOI
11 M. Jung, S. G. Shin, J. W. Lim, S. R. Han, H. Kim, J. H. Jeong, "Tuning the stiffness of dermal fibroblast-encapsulating collagen gel by sequential cross-linking", J. Soc. Cosmet. Sci. Korea, Vol. 44, No. 1, pp. 23-29, (2018).   DOI
12 J. S. Chu, D. M. Yu, G. L. Amidon, N. D. Weiner, A. H. Goldberg, "Viscoelastic properties of polyacrylic acid gels in mixed solvents", Pharm. Res., Vol. 9, No. 12, pp. 1659-1663, (1992).   DOI
13 M. T. Islam, N. Rodriguez-Hornedo, S. Ciotti, C. Ackermann, "Rheological characterization of topical carbomer gels neutralized to different pH", Pharm. Res., Vol. 21, No. 7, pp. 1192-1199, (2004).   DOI
14 R. J. Ketz, R. K. Prud'homme, W. W. Graessley, "Rheology of concentrated microgel solutions", Rheol. Acta., Vol. 27, No. 5, pp. 531-539, (1988).   DOI
15 H. J. Kim, Y. N. Cho, S. W. Cho, Y. Kim, H. W. Ryu, J. H. Jeong, "Tuning the hydrophobicity of agar hydrogel with substituent effect", Polym. Korea, Vol. 40, No. 2, pp. 321-327, (2016).   DOI
16 S. W. Cho, S. G. Shin, H. J. Kim, S. R. Han, J. H. Jeong, "Self-folding of multi-layered hydrogel designed for biological machine", Polym. Korea, Vol. 41, No. 2, pp. 346-351, (2017).   DOI
17 J. Byun, S. G. Shin, S. R. Han, S. W. Cho, J. W. Lim, J. H. Jeong, "Analysis of procollagen biosynthesis of functional peptides utilizing stiffness controlled artificial skin dermis", J. Soc. Cosmet. Sci. Korea, Vol. 44, No. 4, pp. 419-425, (2018).   DOI
18 W. H. Herschel, R. Bulkley, "Konsistenzmessungen von gummibenzollosungen", Colloid and Polym. Sci., Vol. 39, No. 4, pp. 291-300, (1926).