DOI QR코드

DOI QR Code

Tuning the rheological properties of colloidal microgel controlled with degree of cross-links

가교도가 제어된 콜로이드 마이크로겔의 유변학적 물성 분석

  • Han, Sa Ra (Department of Chemical Engineering, Soongsil University) ;
  • Shin, Sung Gyu (Department of Chemical Engineering, Soongsil University) ;
  • Oh, Seung Joo (Department of Chemical Engineering, Soongsil University) ;
  • Cho, Sung Woo (Department of Chemical Engineering, Soongsil University) ;
  • Jung, Naseul (Department of Chemical Engineering, Soongsil University) ;
  • Kang, Bu Kyeung (Dalin cosmetic) ;
  • Jeong, Jae Hyun (Department of Chemical Engineering, Soongsil University)
  • Received : 2019.06.07
  • Accepted : 2019.06.28
  • Published : 2019.06.30

Abstract

In this study, colloidal microgel with viscoelasticity were prepared by using dispersion containing physical crosslinking agents and microgels with various strengths depending on the degree of cross-links.As the chemical crosslinking agent PEGDA400 content increased, hydrogels have various physical properties the swelling ratio decreased from $2.0{\times}10^4%$ to $6.0{\times}10^3%$ and increased viscosity by about 60%. The colloidal microgel was prepared with micro hydrogel grinded to $100{\mu}m$ size and the rheological behavior was confirmed with physical cross linking agent. A colloidal microgel having various viscosities was prepared by controlling starch and alginate based on micro-hydrogel containing 0.75% (w/v) of PEGDA400. In conclusion, these results would be highly useful for applying as a product that can give various physical properties to the colloidal suspensions, cosmetics, paint, and food industry.

본 연구에서는 강도를 조절한 마이크로겔을 사용하여 다양한 점탄성을 갖는 콜로이드 마이크로겔을 제조하였다. 하이드로겔의 화학적 가교제의 함량이 증가할수록 팽윤비는 $2.0{\times}10^4%$에서 $6.0{\times}10^3%$까지 감소하였고, 강도는 22.2 kPa에서 99.7 kPa까지 증가하였다. 이를 $100{\mu}m$ 크기로 분쇄하여 마이크로겔을 제작하였고 이온성 가교결합을 유도하는 분산액과 혼합하여 콜로이드 마이크로겔을 제작하였다. 그 결과, 가교제의 가교도와 분산액에 따라 $10^{-1}rad/s$의 진동수에서 1.679 kPa.s에서 86.485 kPa.s까지 점도를 세밀하게 조절할 수 있었다. 본 연구에서는 콜로이드 마이크로겔의 물성을 제어하기 위해 하이드로겔의 가교도를 조절 또는 분산액의 종류와 함량을 조절하여 다양한 유변학적 거동을 갖는 콜로이드 마이크로겔을 제조하였다. 물성을 제어할 수 있는 콜로이드 마이크로겔을 사용하여 향후 콜로이드 현탁액 및 유화를 제조하는 화장품, 제약, 페인트 및 식품 산업에서 목적에 따라 적합한 물성을 갖는 콜로이드 마이크로겔을 제조할 수 있다.

Keywords

HGOHBI_2019_v36n2_645_f0001.png 이미지

Fig. 1. The overall scheme of colloidal microgel, (a) Hydrogel was cross linked AAc with PEGDA400, (b, c) Microgel was prepared by milling dried hydrogel, (d, e) Microgel combined with starch or alginate was swelled to forming colloidal microgel, (f) Colloidal microgel was analysis mechanical properties.

HGOHBI_2019_v36n2_645_f0002.png 이미지

Fig. 2. (a) The overall synthetic scheme of colloidal microgel polymer, (b-1) Micromilled powder after polymer synthesis, (b-2) Colloidal microgel combined with starch dispersion, (b-3) colloidal microgel applied to the skin.

HGOHBI_2019_v36n2_645_f0003.png 이미지

Fig. 3. (a) The stress-strain curve of hydrogel. (b) Elastic modulus and swelling ratio of each hydrogel.

HGOHBI_2019_v36n2_645_f0004.png 이미지

Fig. 4. (a) Double logarithmic plot of storage modulus (filled symbol) and loss modulus (unfilled symbol) against frequency of CoM-2 dispersed in distilled water and starch dispersion, (b) Semilogarithmic plot of tan delta against frequency of CoM-2 dispersed in distilled water and starch dispersion, (c) Semilogarithmic plot of tan delta ratio against frequency of CoM-2 dispersed in distilled water and starch dispersion.

HGOHBI_2019_v36n2_645_f0005.png 이미지

Fig. 5. (a) Double logarithmic plot of viscosity against frequency of CoM-1,2,3 combined with starch dispersion, (b) Double logarithmic plot of viscosity against frequency of CoM-2 combined with starch and alginate dispersion, (c) Double logarithmic plot of viscosity against frequency of CoM-2 combined with starch dispersion containing varied concentrations of alginate, (d) Double logarithmic plot of storage modulus (filled symbol) and loss modulus (unfilled symbol) against frequency of CoM-2 combined with alginate and starch dispersion.

HGOHBI_2019_v36n2_645_f0006.png 이미지

Fig. 6. (a-1) Amorphous microgel prepared about 100 μm particle size,(a-2) Colloidal microgel of (a-1) combined withstarch and alginate dispersion,(b-1) Spherical micorogel prepared about 10 μm particle size,(b-2) Colloidal microgel of (b-1) dispersed in distilled water(scale bar ; 100 μm).

Table 1. Component of colloidal microgels

HGOHBI_2019_v36n2_645_t0001.png 이미지

References

  1. H.A. Barnes, K. Walters, "The yield stress myth?", Rheol. Acta., Vol. 24, No. 4, pp. 323-326 (1985). https://doi.org/10.1007/BF01333960
  2. R. V. Priscilla, M. C. Camila, S. F. Bruno, F. N. Monica, R. Paulo, "Rheological characterization of Carbopol dispersions in water and in water/glycerol solutions", Fluids, Vol. 4, No. 1, pp. 1-20, (2019). https://doi.org/10.3390/fluids4010001
  3. G. Astarita, "Letter to the Editor: The engineering reality of the yield stress", J. Rheol., Vol. 34, No. 2, pp. 275-277, (1990). https://doi.org/10.1122/1.550142
  4. J.A. Kerres, "Development of ionomer membranes for fuel cells", J. Membr. Sci., Vol. 185, No. 1, pp. 3-27, (2001). https://doi.org/10.1016/S0376-7388(00)00631-1
  5. M. Guo, B. Liu, Z. Liu, L. Wang, Z. Jiang, "Novel acid-base moleculesenhanced blends/ copolymers for fuel cell applications", Journal of Power Sources, Vol. 189, No. 2, pp. 894-901, (2009). https://doi.org/10.1016/j.jpowsour.2008.12.137
  6. D.H. Kang, D. Kim, "Modification of nafion membranes by incorporation of cationic polymer for reduction of methanol permeability", Korean J. Chem. Eng., Vol. 24, No. 6, pp. 1101-1105, (2007). https://doi.org/10.1007/s11814-007-0128-1
  7. A. M. Putz, T. I. Burghelea, "The solid-fluid transition in a yield stress shear thinning physical gel", Rheol. Acta., Vol. 48, No. 6, pp. 673-689, (2009). https://doi.org/10.1007/s00397-009-0365-9
  8. N. W. Taylor, E. B. Bagley, "Dispersions or solutions? A mechanism for certain thickening agents",J. Appl. Polym. Sci., Vol. 18, No. 9, pp. 2747-2761, (1974). https://doi.org/10.1002/app.1974.070180916
  9. P. Moller, A. Fall, V. Chikkadi, D. Derks, D. Bonn, "An attempt to categorize yield stress fluid behavior", Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., Vol. 367, No. 1909, pp. 5139-5155, (2009). https://doi.org/10.1098/rsta.2009.0194
  10. J. Y. Kim, J. Y. Song, E. J. Lee, S. K. Park, "Rheological properties and microstructures of Carbopol gel network system", Colloid and Polym. Sci., Vol. 281, No. 7, pp. 614-623, (2003). https://doi.org/10.1007/s00396-002-0808-7
  11. W. H. Herschel, R. Bulkley, "Konsistenzmessungen von gummibenzollosungen", Colloid and Polym. Sci., Vol. 39, No. 4, pp. 291-300, (1926).
  12. J. S. Chu, D. M. Yu, G. L. Amidon, N. D. Weiner, A. H. Goldberg, "Viscoelastic properties of polyacrylic acid gels in mixed solvents", Pharm. Res., Vol. 9, No. 12, pp. 1659-1663, (1992). https://doi.org/10.1023/A:1015841214591
  13. M. T. Islam, N. Rodriguez-Hornedo, S. Ciotti, C. Ackermann, "Rheological characterization of topical carbomer gels neutralized to different pH", Pharm. Res., Vol. 21, No. 7, pp. 1192-1199, (2004). https://doi.org/10.1023/B:PHAM.0000033006.11619.07
  14. R. J. Ketz, R. K. Prud'homme, W. W. Graessley, "Rheology of concentrated microgel solutions", Rheol. Acta., Vol. 27, No. 5, pp. 531-539, (1988). https://doi.org/10.1007/BF01329353
  15. H. J. Kim, Y. N. Cho, S. W. Cho, Y. Kim, H. W. Ryu, J. H. Jeong, "Tuning the hydrophobicity of agar hydrogel with substituent effect", Polym. Korea, Vol. 40, No. 2, pp. 321-327, (2016). https://doi.org/10.7317/pk.2016.40.2.321
  16. S. W. Cho, S. G. Shin, H. J. Kim, S. R. Han, J. H. Jeong, "Self-folding of multi-layered hydrogel designed for biological machine", Polym. Korea, Vol. 41, No. 2, pp. 346-351, (2017). https://doi.org/10.7317/pk.2017.41.2.346
  17. M. Jung, S. G. Shin, J. W. Lim, S. R. Han, H. Kim, J. H. Jeong, "Tuning the stiffness of dermal fibroblast-encapsulating collagen gel by sequential cross-linking", J. Soc. Cosmet. Sci. Korea, Vol. 44, No. 1, pp. 23-29, (2018). https://doi.org/10.15230/SCSK.2018.44.1.23
  18. J. Byun, S. G. Shin, S. R. Han, S. W. Cho, J. W. Lim, J. H. Jeong, "Analysis of procollagen biosynthesis of functional peptides utilizing stiffness controlled artificial skin dermis", J. Soc. Cosmet. Sci. Korea, Vol. 44, No. 4, pp. 419-425, (2018). https://doi.org/10.15230/SCSK.2018.44.4.419