• Title/Summary/Keyword: 검증시험

Search Result 4,360, Processing Time 0.035 seconds

Upgrading Acoustic Chamber and Verification Test (음향 환경시험 챔버 성능 개선 및 검증 시험)

  • Eun, Hee-Kwang;Im, Jong-Min;Moon, Sang-Moo;Choi, Seok-Weon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.60-65
    • /
    • 2007
  • Acoustic chamber was developed for verifying the performance of a satellite under the launch condition on the Space environment test department. As the size of a satellite is increased the extension of existing facility is required. This paper encompasses the following items; redesign of components in acoustic chamber, product procedures of them and review of the test for the components of satellite in the upgraded acoustic chamber.

  • PDF

Reliability Verification of Numerical Prediction Method on Pile Behaviour Characteristics using Field Static Loading Test (현장정재하시험을 이용한 말뚝 거동특성 수치해석 예측기법의 신뢰성 검증)

  • Nam, Hosung;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.9
    • /
    • pp.11-18
    • /
    • 2017
  • Numerical analysis method for prediction of pile behaviour characteristics has widely been used in detail design process before construction because field static loading test requires high cost. However, the reliability verification of numerical analysis of result is not permitted compare with field test. In this study, to verify the numerical analysis results, pile behaviour prediction was compared with field static loading test results. For exact analysis of interaction between pile and ground, soil investigation and in-situ test such as boring, SPT and bore-hole shear test were performed before pile static loading test. During the static loading test, pile behaviour characteristics were analyzed under every loading condition. After static pile loading test, numerical analysis was carried out under same condition with static pile loading test. In the numerical analysis, to apply same loading condition with each loading condition in the field test and to compare with between the results of numerical analysis, the field test results for reliability were verified with the results of numerical analysis.

Local Resistance Factor Update of Driven Steel Pipe Piles Using Proof Pile Load Test Results (검증용 정재하시험을 이용한 타입강관말뚝의 저항계수 보정)

  • Park, Jae Hyun;Kim, Dongwook;Chung, Choong Ki;Kim, Sung Ryul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.259-266
    • /
    • 2011
  • Conducting statistical analysis of foundation resistance using sufficient number of well-performed load test results is prerequisite for the calibration of reliable resistance factors for foundation LRFD. In this study, a rational analysis method is proposed so that the proof pile load test results can be reflected in update of resistance statistical characteristics based on Bayesian theory. Then, resistance factors for driven steel pipe piles compatible with Korea foundation practices are updated by implementing this rational analysis method. To accomplish the resistance factor updates, (1) prior pile resistance distribution is constructed based on the results of pile load tests, which loads are imposed at least up to their ultimate limit loads. (2) likelihood function is obtained from the results of proof pile load tests, and (3) posterior pile resistance distribution is updated by combining these prior pile resistance distribution and likelihood function. The resistance factors are updated using the posterior pile resistance following the first-order reliability method (FORM). From the possible results of five consecutive proof pile load tests, the updated resistance factors vary within ranges of 0.27-0.96 and 0.19-0.68 for target reliability indices of 2.33 and 3.0, respectively. Consequently, it was found that the Bayesian theory-implemented method enables the updates of resistance factors in an efficient way when reliable resistance factors are not available due to the lack of well-performed pile load test results.

Definition of Performance Indices and Unplementation of Tester for SIP Servers in Next Generation Networks (차세대 방 SIP 서버 시험을 위한 성능 지표 및 시험기 구현)

  • 김용권;박준형;기장근;이규호;최길영;최진규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4B
    • /
    • pp.411-423
    • /
    • 2004
  • This paper defines test methodologies and performance indices for SIP server system, and describes elements that can have influence on the test of SIP network equipments. Moreover, we implement a tester to evaluate the performance of SIP Servers such as Registrar and Proxy server. The performance indices for testing SIP servers are message processing rate, transaction delay, and call success probability. The parameters that can have an effect on the performance of SIP servers are user population, transport protocol, method of database access, method of DNS, call creation pattern, definition of transactions, and size of packets. We tested several SIP servers that act as Registrar, Proxy, and Redirect server using the implemented SIP tester, and, as a result, verified functions of the tester and performance indices and input parameters defined in this paper. Performance indices and methodologies presented in this paper can be used to evaluate SIP servers in NGN

Mission Operation Capability Verification Test for Low Earth Orbit(LEO) Satellite by Utilizing Interface Environment between LEO Satellite and Ground Station (저궤도 위성과 지상국간 접속 환경을 활용한 임무수행능력 지상 검증 시험)

  • Lee, Sang-Rok;Koo, In-Hoi;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • After launch of Low Earth Orbit(LEO) satellite, Initial Activation Checkout(IAC) and Calibration and Validation(Cal & Val) procedure are performed prior to enter normal operation phase. During normal operation phase, most of the time is allocated for mission operation except following up measures to anomaly and orbit maintenance. Since mission operation capability is key indicator for success of LEO satellite program and consistent with promotion purpose of LEO satellite program, reliability should be ensured by conducting through test. In order to ensure reliability by examining the role of LEO satellite and ground station during ground test phase, realistic test scenario that is similar to actual operation conditions should be created, and test that aims to verify full mission cycle should be performed by transmitting created command and receiving image and telemetry data. This paper describes the test design and result. Consideration items for test design are described in detail and result of designed test items are summarized.

Design Study of a Simulation Duct for Gas Turbine Engine Operations (가스터빈엔진을 모의하기 위한 시뮬레이션덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sun Je;Kim, Myung Ho;Kim, You Il;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.124-131
    • /
    • 2019
  • A design study of gas turbine engine simulation duct was conducted to investigate the operating characteristics and control gain tunning of the Altitude Engine Test Facility(AETF). The simulation duct design involved testing variable spike nozzle and ISO standard choking nozzle to verify the measurements such as mass flow rate and thrust. The simulation duct air flow area was designed to satisfy Ma 0.4 at the aerodynamic interface plane(AIP) at engine design condition. The test conditions for verifying the AETF controls and measurement devices were deduced from 1D analysis and CFD calculation results. The spike-cone driving part was designed to withstand the applied aero-load, and satisfy the axial traversing speed of 10 mm/s at whole operation envelops.

Characteristic Tests on the Gas Turbine Generator System for Determination and Verification of Model Parameters in a Combined Cycle Power Plant (복합화력발전소 가스터빈 발전기계통 모델정수 도출 및 검증을 위한 특성시험)

  • Kim, Jong Goo;Yoo, Hoseon
    • Plant Journal
    • /
    • v.17 no.4
    • /
    • pp.35-40
    • /
    • 2021
  • In this study, a technical characteristic test was conducted on the gas turbine generator system of Seoincheon Combined cycle no.6 to derive and verify the model constants. As a result of the generator maximum/minimum reactive power limit test, the maximum reactive power limit is 80 MVar and the minimum is -30 MVar. The generator uses the GENROU model, the field time constant (T'do) is 4.077 s, and the inertial constant (H) is 5.461 P.U. Excitation system used ESST4B model to derive and verify model constants by simulating no-load 2% AVR step test, PSS modeling derived from PSS2A model constants, and simulated and compared measurement data measured when PSS off/on Did. The GGOV1 model was used for the governor-turbine, and the numerical stability of the determined governor-turbine model constant was verified by simulating a 10% governor step test through the PSS/E simulation program

Autonomous Mission Management Software Design and Verification Technique for Unmanned Aerial Vehicles (무인기 자율 임무관리 소프트웨어 설계 및 검증 기법)

  • Chang, Woohyuk;Lee, Seung-Gyu;Kim, Yun-Geun;Oh, Taegeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.505-513
    • /
    • 2021
  • We propose an autonomous mission management software design and verification technique for unmanned aerial vehicles to autonomously mitigate dynamic situation changes occurred in the inside and outside of an aircraft in compliance with the mitigation priority order. The proposed autonomous mission management software is designed in a modular architecture that consists of concurrently executing multiple threads. To verify it, we suggest three verification steps: 1) software integration by checking the expected request/response messages between the threads for all possible dynamic situation changes; 2) integration test to verify the software functionality; 3) performance test to verify the quantitative software performance. Especially, the software integration test environment is built and utilized to carry out the integration and performance tests.

KoDSat System Level EMC(Electro Magnetic Compatibility) Test and an Analysis of the Test Results (검증위성 시스템레벨 전자기파(EMC) 시험 및 결과에 대한 분석)

  • Seo, Min-Seok;Park, Seok-Jun;Sim, Eun-Seop;Kim, Se-Yeon;Chae, Jang-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.102-109
    • /
    • 2006
  • In this paper, the system level EMC radiated emission test results of KoDSat(Korea Demonstration Satellite), its affects upon the Launch vehicle and H/W improving methods regarding its over exceed value of EMC specification are discussed. Regarding its over exceed value, we estimated that DAU of KoDSat generated the exceeded EMC noise source, and these test results were analyzed using the EMC2000 tool to find out how did it affect the FTS(Flight Termination Subsystem) of KSLV-1(Korea Small Launch Vehicle). To diminish the EMC noise source of UHF(430.1Mhz) band level, we redesigned the DAU power board to be applied the various schemes for EMI noise reduction such as grounding, shielding and EMI filtering, and also verified these reworks to analyze its diminishing affects in UHF band level by means of performing the DAU box level EMC test and performing the second KoDSat's system level EMC test.

5.8GHz DSRC 시험 기술

  • 이심석
    • TTA Journal
    • /
    • s.90
    • /
    • pp.138-142
    • /
    • 2003
  • TTA에서 제공하고 있는 5.8GHz DSRC 장비에 대한 TTA Verified Conformance 시험은 올 11월 본격적인 시험$\cdot$인증 서비스를 시작하였으며, 본 글을 통해 서두에 DSRC 기술동향을 정리하여 그 흐름을 간략히 파악하고, 시험 동향을 살펴 기술검증의 필요성을 인식하며, 실제 적용사례를 제시함으로써 그 내용을 확인해보고자 한다.

  • PDF