DOI QR코드

DOI QR Code

Local Resistance Factor Update of Driven Steel Pipe Piles Using Proof Pile Load Test Results

검증용 정재하시험을 이용한 타입강관말뚝의 저항계수 보정

  • 박재현 (한국건설기술연구원 Geo-인프라연구실) ;
  • 김동욱 (한국건설기술연구원 Geo-인프라연구실) ;
  • 정충기 (서울대학교 건설환경공학부) ;
  • 김성렬 (동아대학교 토목공학과)
  • Received : 2011.10.18
  • Accepted : 2011.11.08
  • Published : 2011.12.31

Abstract

Conducting statistical analysis of foundation resistance using sufficient number of well-performed load test results is prerequisite for the calibration of reliable resistance factors for foundation LRFD. In this study, a rational analysis method is proposed so that the proof pile load test results can be reflected in update of resistance statistical characteristics based on Bayesian theory. Then, resistance factors for driven steel pipe piles compatible with Korea foundation practices are updated by implementing this rational analysis method. To accomplish the resistance factor updates, (1) prior pile resistance distribution is constructed based on the results of pile load tests, which loads are imposed at least up to their ultimate limit loads. (2) likelihood function is obtained from the results of proof pile load tests, and (3) posterior pile resistance distribution is updated by combining these prior pile resistance distribution and likelihood function. The resistance factors are updated using the posterior pile resistance following the first-order reliability method (FORM). From the possible results of five consecutive proof pile load tests, the updated resistance factors vary within ranges of 0.27-0.96 and 0.19-0.68 for target reliability indices of 2.33 and 3.0, respectively. Consequently, it was found that the Bayesian theory-implemented method enables the updates of resistance factors in an efficient way when reliable resistance factors are not available due to the lack of well-performed pile load test results.

기초구조물의 신뢰성 있는 저항계수 산정을 위해서는 충분한 양의 재하시험 결과에 근거한 저항의 분포특성 분석이 선행되어야 한다. 본 연구에서는 베이지안 이론에 근거하여 검증용 정재하시험 결과를 저항의 분포특성 분석에 반영할 수 있는 개선된 해석법을 제안하였고, 이를 통해 기 제안된 국내 타입강관말뚝의 저항계수를 갱신하였다. 측정 지지력이 확인된 정재하시험 결과를 이용하여 저항의 사전 분포특성을 산정하고, 검증용 정재하시험 결과를 우도정보로 고려하여 저항의 사후 분포특성을 평가하였다. 갱신된 저항의 사후 분포특성을 이용하여 일차신뢰도법에 의해 저항계수를 산정하였다. 총 5회의 검증용 재하시험 결과를 반영할 경우, 갱신된 저항계수는 목표신뢰도지수 2.33, 3.0에 대하여 각각 0.27-0.96, 0.19-0.68의 범위를 나타내었다. 본 연구에서 제시된 해석법을 통해 양질의 측정지지력 데이터가 부족하여 신뢰성 있는 저항계수를 산정하기 어려운 경우 현장 검증시험 결과를 반영한 저항계수의 보정이 가능함을 확인하였다.

Keywords

References

  1. 국토해양부(2009) 구조물기초설계기준 해설, (사)한국지반공학회.
  2. 박재현, 허정원, 김명모, 곽기석(2008) LRFD 설계를 위한 국내 항타강관말뚝의 저항계수 산정, 대한토목학회 논문집, 대한토목학회, 제28권 제6C호, pp. 367-377.
  3. 박재현, 김동욱, 곽기석, 정문경, 김준영, 정충기(2010) 베이지안 이론을 이용한 타입강관말뚝의 신뢰성 평가, 한국지반공학회논문집, 한국지반공학회, Vol. 26, No. 7, pp. 161-170.
  4. 한국건설기술연구원(2008) LRFD 기초구조물 설계를 위한 저항계수 결정 연구, 건설교통 R&D 정책.인프라사업 3차년도 최종 연구보고서, 국토해양부.
  5. 한국지반공학회(1997) 지반조사 결과의 해석 및 이용, 지반공학시리즈 1, 도서출판 구미서관.
  6. American Association of State Highway and Transportation Official (AASHTO) (2007) AASHTO LRFD Bridge Design Specifications Fourth Edition. AASHTO, Washington DC.
  7. Ang, A.H.-S. and Tang, W.H. (1975) Probability Concepts in Engineering Planning and Design. Vol. I, Basic Principles, John Wiley & Sons, New York.
  8. Baecher, G.B. and Rackwitz, R. (1982) Factors of safety and pile load tests,International, Journal for Numerical and Analytical Methods in Geomechanics, Vol. 6, pp. 409-424. https://doi.org/10.1002/nag.1610060404
  9. Ching, J.Y., Lin, H.-D., and Yen, M.-T. (2009) Reliability-based code calibration for axial ultimate bearing capacities of single bored piles in Taipei basin, Journal of Mechanics, Vol. 25, No. 4, pp. 389-400. https://doi.org/10.1017/S1727719100002872
  10. Davisson, M. (1972) High Capacity Piles, Proceedings of Soil Mechanics Lecture Series on Innovations in Foundation Construction, ASCE, Illinois Section, Chicago, IL, pp. 82-112.
  11. Devore, J.L. (2004) Probability and statistics for engineering and science, 6th edition, Cole Publishing Co.
  12. Evangelista, A., Pellegrino, A., and Viggiani, C. (1977) Variability among piles of the same foundation, Proceedings of 9th ICSMFE, Tokyo, pp. 493-500.
  13. Kay, J.N. (1976) Safety factor evaluation for single piles in sand, Journal of Geotechnical Engineering Division, ASCE, Vol. 102, No. 10, pp. 1093-1108.
  14. Kim, D. (2008) Load and resistance factor design of slopes and MSE walls, Ph.D. Dissertation, Purdue University.
  15. Kwak, K., Kim, K.J., Huh, J., Lee, J.H., and Park, J.H. (2010) Reliability Based Calibration of Resistance Factors for Static Bearing Capacity of Driven Steel Pipe Piles, Canadian Geotechnical journal, Vol. 47, No. 5, pp. 528-538. https://doi.org/10.1139/T09-119
  16. Meyerhof, G.G. (1976) Bearing capacity and settlement of pile foundations, Journal of Geotechnical Engineering Division, ASCE, Vol. 102, No. GT3, pp. 196-228.
  17. Nowak, A.S. (1999) Calibration of LRFD Bridge Design Code, NCHRP report 368. Transportation Research Board of the National Academies, Washington, D.C.
  18. Paikowsky, S.G. (2004) Load and Resistance Factor Design for Deep Foundations, NCHRP Report 507, Transportation Research Board, Washington, D.C.
  19. Park, J.H. (2011) Resistance factor calibration and Bayesian implementation for LRFD of axially-loaded driven steel pipe piles, Ph.D. Dissertation, Seoul National University.
  20. Rackwitz, R. and Fiessler, B. (1978) Structural reliability under combined random load sequences, Computers and Structures, Vol. 9, pp. 489-494. https://doi.org/10.1016/0045-7949(78)90046-9
  21. Rahman, M.S., Gabr, M.A., Sarica, R.Z., and Hossain, M.S. (2002) Load and resistance factor design (LRFD) for analysis/design of piles axial capacity, FHWA/NC/2005-08, Raleigh, North Carolina.
  22. Tippett, L.H.C. (1925) On the extreme individuals and the range of samples taken from a normal population, Biometrika, Vol. 17, No. 3/4, pp. 364-387. https://doi.org/10.1093/biomet/17.3-4.364
  23. Zhang, L.M. and Tang, W.H. (2002) Use of load tests for reducing pile length, Proceedings of Deep Foundation 2002, ASCE, Orlando, Florida, pp. 993-1005.
  24. Zhang, L.M. (2004) Reliability verification using proof pile load tests, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No. 11, pp. 1203-1213. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:11(1203)
  25. Zhang, L.M., Tang, W.H., Zhang, L.L., and Zhang, J. (2004) Reducing uncertainty of prediction from empirical correlations, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No. 5, pp. 526-534. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(526)