• Title/Summary/Keyword: 건설 소재

Search Result 302, Processing Time 0.024 seconds

해안유역의 지하수 함양율 평가기법

  • 박남식;한수영
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.02a
    • /
    • pp.199-221
    • /
    • 2004
  • 본 연구의 목적은 해안 유역의 지하수 함양율을 평가하는 기법을 제시하는 데 그 목적이 있다. 해안 유역에서 이용되는 수자원 중에서 지하수가 차지하는 비중은 내륙에 소재한 유역의 지하수 비중에 비하여 더욱 크다. 해안지역의 급수율은 전국 평균 급수율의 절반에도 미치지 못하는 40%대로 나타났으며, 해안지역 1인당 지하수 이용량은 전국 평균의 4배에 달하는 261㎥로 조사되었다(홍성훈 외, 2003). 또한 94년과 96년에 발생한 10∼15년 재현기간의 가뭄 시대부분의 해안지역이 제한급수지역에 포함된 바 있다(건설교통부, 2001). (중략)

  • PDF

A Study on Organic-Inorganic Hybrid Sound Absorbing Materials Using by Recycling Gypsum (재활용 석고 부산물을 이용한 유무기 하이브리드 흡음재 개발 연구)

  • Shin, Hyun-Gyoo;Jeon, Bo-Ram;Ha, Joo-Yeon;Jeon, Chan-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.481-487
    • /
    • 2017
  • The purpose of this study is to develop the hybrid sound-absorbing materials that is made from organic polyurethane sponge impregnated with inorganic binder solutions. The inorganic slurry which is made from ${\alpha}$-hemihydrate gypsum mixed with 60% water, and various additives including plasticizer are used as binder. The test specimens are prepared and tested for sound absorption performance by the impedance tube methods. From the test results, noise reduction coefficient(NRC) of development materials specimen bound by the inorganic binder slurry is 0.41. They are 2 times or more higher than commercial products specimens bound by organic materials only which have NRC values in the range of 0.14 to 0.28. The polyurethane sponge specimens impregnated with inorganic gypsum slurry binder have a good balance between performance and cost, and have proper properties in density, thermal conductivity, non-combustible, and absence of harmful substances as sound-absorbing internal boards for noise barrier wall. It is apparent that the good sound absorption materials can be produced according to the optimum mix design that is recommended from this study.

Evaluation on Odor Removal Performance of Bacteria-Based Odor Reduction Kit for Revetment Blocks (호안블록용 박테리아 기반 악취저감 키트의 악취제거 성능평가)

  • Keun-Hyoek Yang;Ju-Hyun Mun;Ki-Tae Jeong;Hyun-Sub Yoon;Jae-Il Sim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.229-238
    • /
    • 2024
  • This study evaluated the odor removal performance of a bacteria-based odor reduction kit. The bacteria used were Rhodobacter capsulatus, Paracoccus limosus, and Brevibacterium hankyongi, which can remove ammonia (NH3), hydrogen sulfide (H2S), total nitrogen (T-P), and total phosphorus (T-N), which are odor pollutants. The materials used were bacteria and porous aggregates (expanded vermiculite, zeolite beads, activated carbon), and the combination of the materials varied depending on the removal mechanism. Materials with a physical adsorption mechanism (zeolite beads and activated carbon) gradually slowed down the concentration reduction rate of odor pollutants (NH3, H2S, T-P, and T-N), and had no further effect on reducing the concentration of odor pollutants after 60 hours. Expanded vermiculite, in which bacteria that remove odors through a bio-adsorption mechanism were immobilized, had a continuous decrease in concentration, and the concentration of odor pollutants reached 0 ppm after 108 hours. As a result, the odor removal performance of materials with physical adsorption mechanisms in actual river water did not meet the odor emission standard required by the Ministry of Environment, while the expanded vermiculite immobilized with bacteria satisfied the odor emission permissible standard and achieved water quality grade 1.

Evaluation of PLA Fiber Dissolution in Cement Paste and Geopolymer (시멘트 페이스트 및 지오폴리머 내의 PLA 섬유의 용해성 평가)

  • Kim, Joo-Hyung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.204-211
    • /
    • 2020
  • Poly-Lactic Acid(PLA) fiber is an eco-friendly material and is biodegradable, so it can be utilized for manufacturing porous construction materia ls with interna l pore connection. In this study, domestic PLA fiber products(0.5mm india meter, 1.0mm in length, 10mm in length) were tested for melting at high temperatures and high alkality, and they were incorporated with FA-based geopolymer. Compressive strength was obtained through high temperature curing and alkali activator, however the complete melting of the PLA fiber was not ensured. The previous study handling PLA fiber with 0.003mm in diameter was completely dissolved, but 0.5mm and 1.0mm in diameter showed 42.5% and 33.3% of dissolution ratio, respectively. In addition, the increasing fiber volume led floating fibers during curing, which had a negative effect on its workability and solubility. Although the properties of PLA fiber may vary depending on the raw materials and production conditions, PLA fiber with 0.1mm or less diameter is recommended for porous construction material.

Evaluation Method of Healing Performance of Self-Healing Materials Based on Equivalent Crack Width (등가균열폭에 기반한 자기치유 재료의 치유성능 평가 방법)

  • Lee, Woong-Jong;Kim, Hyung-Suk;Choi, Sung;Park, Byung-Sun;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.383-388
    • /
    • 2021
  • In this study, constant head water permeability test was adopted to evaluate self-healing performance of mortars containing inorganic healing materials which consist of blast furnace slag, sodium sulfate and anhydrite. Clinker powder and sand replaced for a part of cement and fine aggregates. On constant head water permeability test for self-healing mortars, unit water flow rate of mortar specimens were measured according to crack width and healing period. As a result of evaluating the healing performance of self-healing mortar, it was confirmed that with the initial crack width of 0.3mm, the healing rate at healing period of 28 days increased by more than 30%p compared to plain mortar, greatly improving the healing performance. Furthermore, the coefficient(α) which was estimated from the relationship between crack width and unit water flow rate was used for calculating equivalent crack width. By analyzing the correlation of healing rate and equivalent crack width, the time and initial crack width attaining healing target crack width were predicted.

Free Vibration Analysis based on HSDT of Laminated Composite Plate Structures Using Multi-scale Approach (멀티 스케일 접근 방법에 의한 복합소재 적층 판구조의 HSDT 기반 고유진동 해석)

  • Lee, Sang-Youl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.61-71
    • /
    • 2014
  • This study carried out finite element vibration analysis of composite plate structures for construction using multi-scale approaches, which is based on the higher-order theory. The finite element (FE) models for composite structures using multi-scale approaches described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the effect of the material combination. The FE model is used for studying free vibrations of laminated composite plates for various fiber-volume fractions. In particular, new results reported in this paper are focused on the significant effects of the fiber-volume fraction for various parameters, such as fiber angles, layup sequences, and length-thickness ratios. It may be concluded from this study that the combination effect of fiber and matrix, largely governing the dynamic characteristics of composite structures, should not be neglected and thus the optimal combination could be used to design such civil structures for better dynamic performance.

High Temperature Properties of Cement Mortar Using EVA, EVCL Redispersible Polymer Powder and Fly Ash (EVA, EVCL 분말수지와 플라이애시를 혼입한 시멘트 모르타르의 고온특성)

  • Song, Hun;Shin, Hyeonuk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.365-372
    • /
    • 2018
  • 3D printing technology of construction field can be divided into structural materials, interior and exterior finishing materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a additive type manufacturing, and the role of a redispersible polymer powder is important. But, high temperatures, redispersible polymer cement base material beget dehydration and micro crack of cement matrix. In this research, we developed a EVA, EVCL redispersible polymer cement base material applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility. From the test result, developed EVCL redispersible polymer cement mortar showed good stability in high temperatures. These high temperature stability is caused by the ethylene-vinyl chloride binding. Thus, this result indicates that it is possible to fire resistant 3D printing interior and exterior finishing materials.

Basic Characteristics of Slag Cement using CO2 Fixed Desulfurized Gypsum (CO2 고정 탈황석고를 사용한 슬래그 시멘트의 기초적 특성)

  • Chun-Jin Park;Jong-Ho Park;Sung-Kwan Seo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.25-31
    • /
    • 2023
  • In this study, the basic properties of CO2 immobilized desulfurized gypsum (CFBG) and the possibility of being used as a stimulus for slag cement were reviewed, and performance evaluation was conducted through a concrete mixing test. The main components of CFBG were CaO and SO3, and CaO and SO3 increased as the drying temperature increased. The moisture content of undried CFBG was 15.7 %, the drying temperature was 1.7 % and the drying temperature was 0.03 % at 105 ℃. Mortar using CFBG tended to have a lower flow value as the drying temperature increased, and the compressive strength was equivalent to that of the FGB use mixture. As a result of the concrete experiment using CFBG SC, both slump and air volume satisfied the target range after 60 minutes, and the compressive strength tended to increase overall compared to the ternary binder mixture.

Image and Phase Analysis of Low Carbon Type Recycled Cement Using Waste Concrete Powder (폐콘크리트 미분말을 사용한 저탄소형 시멘트의 조직 및 상분석)

  • Song, Hun;Shin, Hyeon-Uk;Lee, Jong-Kyu;Chu, Yong-Sik;Park, Dong-Chan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.314-320
    • /
    • 2014
  • Although the cement industry serves as the cornerstone of the construction industry by supplying one of its fundamental materials, it confronts new environmental challenges due to the problem of the $CO_2$ generated from raw materials and fuel used in the cement manufacturing process. Also, concrete structures can be decomposed and reused as construction materials. Simply in terms of the cyclic processing of $CO_2$, recycling waste concrete to manufacture recycled aggregate or recycling waste concrete powder, which is the material for cement can be considered optimally environment-friendly practices. This study contributes to the aim of manufacturing high value added materials that exploits the chemical properties of the waste concrete powder. From the research results, waste concrete powder is feasible to use to produce low carbon type recycled cement.

An empirical study on the effect of distance decay for the relocated firms using distance-decay function by industrial types in the Seoul Metropolitan Area (거리조락함수를 이용한 수도권 지역간 기업이동 거리감쇄효과 실증 연구)

  • An, Youngsoo;Lee, Seungil
    • Journal of the Korean Regional Science Association
    • /
    • v.31 no.2
    • /
    • pp.47-61
    • /
    • 2015
  • The purpose of this study to empirical analysis of the effects of distance-decay for the relocated firms in the Seoul Metropolitan Area(SMA). In addition, this study was constructed distance-decay function for the relocated firms by industrial types using a general distance-decay function. The data of relocated firms in the SMA extracted from the spatial database which was constructed in an previous research. The industrial type divided into 3 parts which are construction, manufacturing, and service. The result of empirical analysis by each industrial type of the effect of distance-decay, the explanatory power($R^2$) of the each function were all high. In the construction, the adjusted $R^2$ of the distance-decay function was 0.728, the manufacturing was 0.802 and the service was 0.812. It means the effect of distance decay for the relocated firms in construction industrial type more big than the effects of distance decay for the manufacturing and service industrial types.