• Title/Summary/Keyword: 강우 자료

Search Result 2,867, Processing Time 0.03 seconds

Experimental study of the air emission effect in the tangential and the multi-stage spiral inlet (접선식 유입구와 다단식 나선 유입구의 공기 배출 효과에 관한 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • Recently, urban inundation was frequently occurred due to the intensive rainfall exceeding marginal capacity of the flood control facility. Furthermore, needs for the underground storage facilities to mitigate urban flood are increasing according to rapidly accelerating urbanization. Thus, in this study, drainage efficiency in drain tunnel connecting to underground storage was investigated from the air-core measurements in the drop shaft against two types of inlet structure. In case of the spiral inlet, the multi-stage structure is introduced at the bottom of the inlet to improve the vortex induction effect at low inflow discharge (multi-stage spiral inlet). The average cross-sectional area of the air-core in the multi-stage spiral inlet is 10% larger than the tangential inlet, and show the highly air emission effect and the highly inflow efficiency at the high inflow discharge. In case of the tangential inlets, the air emission effect decreased after exceeding the maximum inflow discharge, which is required to maintain the inherent performance of the tangential inlet. From the measurements, the empirical formula for the cross-sectional area of the air-core according to locations inside the drop shaft was proposed in order to provide the experimental data available for the inlet model used in experiments.

Construction of a Sub-catchment Connected Nakdong-gang Flood Analysis System Using Distributed Model (분포형 모형을 이용한 소유역 연계 낙동강 홍수해석시스템 구축)

  • Choi, Yun-Seok;Won, Young-Jin;Kim, Kyung-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.202-202
    • /
    • 2018
  • 본 논문에서는 분포형 강우-유출 모형인 GRM(Grid based Rainfall-runoff Model)(최윤석, 김경탁, 2017)을 이용해서 낙동강 유역을 대상으로 대유역 홍수해석시스템을 구축하고, 유출해석을 위한 실행시간을 평가하였다. 유출모형은 낙동강의 주요 지류와 본류를 소유역으로 구분하여 모형을 구축하고, 각 소유역의 유출해석 결과를 실시간으로 연계할 수 있도록 하여 낙동강 전체 유역의 유출모형을 구축하였다. 이와 같이 하나의 대유역을 다수의 소유역시스템으로 분할하여 모형을 구축할 경우, 유출해석시스템 구성이 복잡해지는 단점이 있으나, 소유역별로 각기 다른 자료를 이용하여 다양한 해상도로 유출해석을 할 수 있으므로, 소유역별 특성에 맞는 유출모형 구축이 가능한 장점이 있다. 또한 각 소유역시스템은 별도의 프로세스로 계산이 진행되므로, 대유역을 고해상도로 해석하는 경우에도 계산시간을 단축할 수 있다. 본 연구에서는 낙동강 유역을 20개(본류 구간 3개, 1차 지류 13개, 댐상류 4개)의 소유역으로 분할하여 계산 시간을 검토하였으며, 최종적으로 21개(본류 구간 3개, 1차 지류 13개, 댐상류 5개)의 소유역으로 분할하여 유출해석시스템을 구축하였다. 댐 상류 유역은 댐하류와 유량전달이 없이 독립적으로 모의되고, 댐과 연결된 하류 유역은 관측 방류량을 상류단 하천의 경계조건으로 적용한다. 지류 유역은 본류 구간과 연결되고, 지류의 계산 유량은 본류와의 연결지점에 유량조건으로 실시간으로 입력된다. 이때 본류와 지류의 유량 연계는 데이터베이스를 매개로 하였다. 유출해석시스템의 성능을 평가하기 위해서 Microsoft 클라우드 서비스인 Azure를 이용하였다. 낙동강 유역을 20개 소유역으로 구성한 경우에서의 유출해석시스템의 속도 평가 결과 Azure virtual machine instance DS15 v2(OS : Windows Server 2012 R2, CPU : 2.4 GHz Intel $Xeon^{(R)}$ E5-2673 v3 20 cores)에서 1.5분이 소요 되었다. 계산시간 평가시 GRM은 'IsParallel=false' 옵션을 적용하였으며, 모의 기간은 24시간을 기준으로 하였다. 연구결과 분포형 모형을 이용한 대유역 유출해석시스템 구축이 가능했으며, 계산시간도 충분히 단축할 수 있었다. 또한 추가적인 CPU와 병렬계산을 적용할 경우, 계산시간은 더 단축될 수 있으며, 이러한 기법들은 분포형 모형을 이용한 대유역 유출해석시스템 구축시 유용하게 활용될 수 있을 것으로 판단된다.

  • PDF

Application of 3D point cloud modeling for performance analysis of reinforced levee with biopolymer (3차원 포인트 클라우드 모델링 기법을 활용한 바이오폴리머 기반 제방 보강공법의 성능 평가)

  • Ko, Dongwoo;Kang, Joongu;Kang, Woochul
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.181-190
    • /
    • 2021
  • In this study, a large-scale levee breach experiment from lateral overflow was conducted to verify the effect of the new reinforcement method applied to the levee's surface. The new method could prevent levee failure and minimize damage caused by overflow in rivers. The levee was designed at the height of 2.5 m, a length of 12 m, and a slope of 1:2. A new material mixed with biopolymer powder, water, weathered granite, and loess in an appropriate ratio was sprayed on the levee body's surface at a thickness of about 5 cm, and vegetation recruitment was also monitored. At the Andong River Experiment Center, a flow (4 ㎥/s) was introduced from the upstream of the A3 channel to induce the lateral overflow. The change of lateral overflow was measured using an acoustic doppler current profiler in the upstream and downstream. Additionally, cameras and drones were used to analyze the process of the levee breach. Also, a new method using 3D point cloud for calculating the surface loss rate of the levee over time was suggested to evaluate the performance of the levee reinforcement method. It was compared to existing method based on image analysis and the result was reasonable. The proposed 3D point cloud methodology could be a solution for evaluating the performance of levee reinforcement methods.

ROC Analysis of Topographic Factors in Flood Vulnerable Area considering Surface Runoff Characteristics (지표 유출 특성을 고려한 홍수취약지역 지형학적 인자의 ROC 분석)

  • Lee, Jae Yeong;Kim, Ji-Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.327-335
    • /
    • 2020
  • The method of selecting an existing flood hazard area via a numerical model requires considerable time and effort. In this regard, this study proposes a method for selecting flood vulnerable areas through topographic analysis based on a surface runoff mechanism to reduce the time and effort required. Flood vulnerable areas based on runoff mechanisms refer to those areas that are advantageous in terms of the flow accumulation characteristics of rainfall-runoff water at the surface, and they generally include lowlands, mild slopes, and rivers. For the analysis, a digital topographic map of the target area (Seoul) was employed. In addition, in the topographic analysis, eight topographic factors were considered, namely, the elevation, slope, profile and plan curvature, topographic wetness index (TWI), stream power index, and the distances from rivers and manholes. Moreover, receiver operating characteristic analysis was conducted between the topographic factors and actual inundation trace data. The results revealed that four topographic factors, namely, elevation, slope, TWI, and distance from manholes, explained the flooded area well. Thus, when a flood vulnerable area is selected, the prioritization method for various factors as proposed in this study can simplify the topographical analytical factors that contribute to flooding.

Change of dry matter and nutrients contents in plant bodies of LID and roadside (도로변 및 LID 시설 내 식생종류별 식물체 내 건물률 및 영양염류 함량 변화)

  • Lee, YooKyung;Choi, Hyeseon;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • The application of nature-based solutions, such as low impact development (LID) techniques and green infrastructures, for stormwater management continue to increase in urban areas. Plants are usually utilized in LID facilities to improve their pollutant removal efficiency through phytoremediation. Plants can also reduce maintenance costs and frequency by means of reducing the accumulation of pollutants inside the facility. Plants have long been used in different LID facilities; however, proper plant-selection should be considered since different species tend to exhibit varying pollutant uptake capabilities. This study was conducted to investigate the pollutant uptake capabilities of plants by comparing the dry matter and nutrient contents of different plant species in roadsides, LID facilities, and landscape areas. The dry matter content of the seven herbaceous plants, shrubs, and arboreal trees ranged from 60% to 90%. In terms of nutrient content, the total nitrogen (TN) concentration in the tissues of herbaceous plants continued to increase until the summer season, but gradually decreased in the succeeding periods. TN concentrations in shrubs and trees were observed to be high from early spring up to the late summer seasons. All plant samples collected from the LID facility exhibited high TP content, indicating that the vegetative components of LID systems are efficient in removing phosphorus. Overall, the nutrient content of different plant species was found to be highly influenced by the urban environment which affected the stormwater runoff quality. The results of this study can be beneficial for establishing plant selection criteria for LID facilities.

SWAT model calibration/validation using SWAT-CUP III: multi-site and multi-variable model analysis (SWAT-CUP을 이용한 SWAT 모형 검·보정 III: 다중 관측 지점 및 변수를 고려한 분석)

  • Cho, Younghyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1143-1157
    • /
    • 2020
  • In this study, a criteria for the SWAT model calibration method in SWAT-CUP which considers multi-site and multi-variable observations was presented. For its application, the SWAT model was simulated using long-term observed flow, soil moisture, and evapotranspiration data in Yongdam study watershed, investigating the hydrological runoff characteristics and water balance in the water cycle analysis. The model was calibrated with different parameter values for each sub-watershed in order to reflect the characteristics of multiple observations through one-by-one calibration, appropriate settings of model simulation run/iteration number (1,000 simulation runs in the first iteration and then 500 simulation runs for the following iterations), and executions of partial and all run in SWAT-CUP. The flow simulation results of watershed outlet point, ENS 0.85, R2 0.87, and PBIAS -7.6%, were compared with the analysis results (ENS 0.52, R2 0.54, and PBIAS -22.4%) applied in the other batch (i.e., non one-by-one) calibration approach and showed better performances of proposed method. From the simulation results of a total of 15 years, it was found that the total runoff (streamflow) and evapotranspiration rates from precipitation are 53 and 39%, and the ratio of surface runoff and baseflow (i.e., sum of lateral and return flow, and recharge deep aquifer) are 35 and 65%, respectively, in Yongdam watershed. In addition, the analytical amount of available water (i.e., water yield), including the total annual streamflow (daily average 21.8 m3/sec) is 6.96 billion m3 per year (about 540 to 900 mm for sub-watersheds).

A decision-centric impact assessment of operational performance of the Yongdam Dam, South Korea (용담댐 기존운영에 대한 의사결정중심 기후변화 영향 평가)

  • Kim, Daeha;Kim, Eunhee;Lee, Seung Cheol;Kim, Eunji;Shin, June
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.205-215
    • /
    • 2022
  • Amidst the global climate crisis, dam operation policies formulated under the stationary climate assumption could lead to unsatisfactory water management. In this work, we assessed status-quo performance of the Yongdam Dam in Korea under various climatic stresses in flood risk reduction and water supply reliability for 2021-2040. To this end, we employed a decision-centric framework equipped with a stochastic weather generator, a conceptual streamflow model, and a machine-learning reservoir operation rule. By imposing 294 climate perturbations to dam release simulations, we found that the current operation rule of the Yongdam dam could redundantly secure water storage, while inefficiently enhancing the supply reliability. On the other hand, flood risks were likely to increase substantially due to rising mean and variability of daily precipitation. Here, we argue that the current operation rules of the Yongdam Dam seem to be overly focused on securing water storage, and thus need to be adjusted to efficiently improve supply reliability and reduce flood risks in downstream areas.

Development and run time assessment of the GPU accelerated technique of a 2-Dimensional model for high resolution flood simulation in wide area (광역 고해상도 홍수모의를 위한 2차원 모형의 GPU 가속기법 개발 및 실행시간 평가)

  • Choi, Yun Seok;Noh, Hui Seong;Choi, Cheon Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.991-998
    • /
    • 2022
  • The purpose of this study is to develop GPU (Graphics Processing Unit) acceleration technique for 2-dimensional model and to assess the effectiveness for high resolution flood simulation in wide area In this study, GPU acceleration technique was implemented in the G2D (Grid based 2-Dimensional land surface flood model) model, using implicit scheme and uniform square grid, by using CUDA. The technique was applied to flood simulation in Jinju-si. The spatial resolution of the simulation domain is 10 m × 10 m, and the number of cells to calculate is 5,090,611. Flood period by typhoon Mitag, December 2019, was simulated. Rainfall radar data was applied to source term and measured discharge of Namgang-Dam (Ilryu-moon) and measured stream flow of Jinju-si (Oksan-gyo) were applied to boundary conditions. From this study, 2-dimensional flood model could be implemented to reproduce the measured water level in Nam-gang (Riv.). The results of GPU acceleration technique showed more faster flood simulation than the serial and parallel simulation using CPU (Central Processing Unit). This study can contribute to the study of developing GPU acceleration technique for 2-dimensional flood model using implicit scheme and simulating land surface flood in wide area.

Review for Assessment Methodology of Disaster Prevention Performance using Scientometric Analysis (계량정보 분석을 활용한 방재성능평가 방법에 대한 고찰)

  • Dong Hyun Kim;Hyung Ju Yoo;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.39-46
    • /
    • 2022
  • The rainfall characteristics such as heavy rains are changing differently from the past, and uncertainties are also greatly increasing due to climate change. In addition, urban development and population concentration are aggravating flood damage. Since the causes of urban inundation are generally complex, it is very important to establish an appropriate flood prevention plan. Thus, the government in Korea is establishing standards for disaster prevention performance for each local government. Since the concept of the disaster prevention performance target was first presented in 2010, the setting standards have changed several times, but the overall technology, methodology, and procedures have been maintained. Therefore, in this study, studies and technologies related to urban disaster prevention performance were reviewed using the scientometric analysis method to review them. This analysis is a method of identifying trends in the field and deriving new knowledge and information based on data such as papers and literature. In this study, papers related to the disaster prevention performance of the Web of Science for the last 30 years from 1990 to 2021 were collected. Citespace, scientometric software, was used to identify authors, research institutes, countries, and research trends, including citation analysis. As a result of the analysis, consideration factors such as the the concept of asset evaluation were identified when making decisions related to urban disaster prevention performance. In the future, it is expected that prevention performance standards and procedures can be upgraded if the keywords are specified and the review of each technology is conducted.

Modeling of Dam collapse using PMF and MCE conditions (PMF 및 MCE조건을 적용한 댐 붕괴 모델링)

  • Lee, Dong Hyeok;Jun, Kye Won;Lee, Byung Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.368-368
    • /
    • 2020
  • 최근 초대형화 되어 나타나고 있는 이상홍수와 지진 등에 의한 저수지 붕괴와 같은 대규모 비상상황 발생으로 하류지역 주민의 생명과 재산의 피해가 발생하고 있다. 국내의 경우 1996년 이후로 지속적으로 발생하고 있는 이상홍수로 인해 1998년에는 40개,1999년에는 5개의 소규모 저수지가 붕괴되었으며 최근 2013년과 2014년에도 저수지가 붕괴되는 상황이 발생했다. 댐붕괴의 원인은 구조물의 자연적 노화, 극심한 강우나 홍수, 지진, 제체전도, 파이핑, 침윤발생, 월류 및 파랑 등에 의한 자연적 상황 등이 요인이 될 수 있으며, 시공결함, 사고 또는 전쟁과 같은 인위적인 요인으로 발생할 수도 있다. 과거에 설계 및 시공기술이 부족하였거나 경제적인 이유로 부실하게 건설되어 있는 댐이 세계적으로 산재되어 있어 잠재적인 위험을 상당수 내재하고 있는 실정이다. 본연구는 댐의 점진적인 파괴에 의해 발생하는 유출수문곡선을 구하고 파괴의 성질을 예측 및 홍수파를 수리학적으로 추적하기위해 BREACH 모형과 DAMBRK 모형을 사용했으며 극한홍수(PMF)조건과와 최대지진발생(MCE)조건을 적용하여 원주시 관내 저수지 붕괴 모의 시나리오를 구축했다. 저수지 붕괴에 따른 유출수문곡선을 유도하기 위해서 본 연구에서는 기존의 EAP보고서 자료를 참고하여 붕괴지속시간, 붕괴부 평균폭, 붕괴부 측벽면 경사의 변화에 따라 다양한 모의를 수행함으로써 발생되는 붕괴부 유량 수문곡선을 도출하여 각각의 조건들이 붕괴파 형성에 미치는 영향에 대한 분석을 실시하였다. 그 결과 저수지의 붕괴시 첨두유출량에 민감한 영향을 주는 인자는 붕괴지속시간과, 붕괴부 평균폭으로서 이들 값이 붕괴유출량 변화에 많은 영향을 주는 것으로 나타났다. 최대지진발생(MCE)조건 해석결과 홍수류의 범람으로 인해 홍수파가 하류측으로 진행할수록 완만히 감소하며, 하천 중·상류부 인근 제내지로 홍수류의 범람이 발생하는 것으로 검토되었으며, 극한홍수(PMF)조건 해석결과 최대지진발생(MCE)조건과 같이 홍수파가 하류측으로 진행할수록 완만히 감소하는 특성을 보이며, 하천 전체 구간에서 인근제내지로 홍수류의 범람이 발생하는 것으로 검토되었다. 본 연구는 침수구역 피해규모 산정 및 비상대처계획도를 작성시 기초데이터가 되어 상황별 피해예상지역에 대해 응급행동요령, 주민대피계획비상대처계획을 수립하여 지역 주민생활에 안정을 기여하고자 한다.

  • PDF