DOI QR코드

DOI QR Code

Development and run time assessment of the GPU accelerated technique of a 2-Dimensional model for high resolution flood simulation in wide area

광역 고해상도 홍수모의를 위한 2차원 모형의 GPU 가속기법 개발 및 실행시간 평가

  • Choi, Yun Seok (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Noh, Hui Seong (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Cheon Kyu (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 최윤석 (한국건설기술연구원 수자원하천연구본부 연구위원) ;
  • 노희성 (한국건설기술연구원 수자원하천연구본부 연구위원) ;
  • 최천규 (한국건설기술연구원 수자원하천연구본부 연구위원)
  • Received : 2022.10.12
  • Accepted : 2022.10.25
  • Published : 2022.12.31

Abstract

The purpose of this study is to develop GPU (Graphics Processing Unit) acceleration technique for 2-dimensional model and to assess the effectiveness for high resolution flood simulation in wide area In this study, GPU acceleration technique was implemented in the G2D (Grid based 2-Dimensional land surface flood model) model, using implicit scheme and uniform square grid, by using CUDA. The technique was applied to flood simulation in Jinju-si. The spatial resolution of the simulation domain is 10 m × 10 m, and the number of cells to calculate is 5,090,611. Flood period by typhoon Mitag, December 2019, was simulated. Rainfall radar data was applied to source term and measured discharge of Namgang-Dam (Ilryu-moon) and measured stream flow of Jinju-si (Oksan-gyo) were applied to boundary conditions. From this study, 2-dimensional flood model could be implemented to reproduce the measured water level in Nam-gang (Riv.). The results of GPU acceleration technique showed more faster flood simulation than the serial and parallel simulation using CPU (Central Processing Unit). This study can contribute to the study of developing GPU acceleration technique for 2-dimensional flood model using implicit scheme and simulating land surface flood in wide area.

본 연구의 목적은 넓은 지역의 고해상도 홍수모의를 위해서 2차원 모형의 GPU (Graphics Processing Unit) 가속 모의기법을 개발하고 이에 대한 효과를 평가하는 것이다. 음해법을 적용하고 있는 정형 사각형 격자 기반의 2차원 모형인 G2D (Grid based 2-Dimensional land surface flood model) 모형에서 CUDA를 이용하여 GPU 가속 모의 기법을 개발하였다. 개발된 기법을 진주시 홍수모의에 적용하였다. 모의 도메인의 공간해상도는 10 m × 10 m이고, 계산되는 격자의 개수는 총 5,090,611개이다. 홍수모의는 2019년 10월 태풍 미탁에 의한 홍수 기간에 대해서 수행하였다. 강우레이더 자료를 생성항으로 적용하였으며, 남강댐 일류문 계측 방류량과 진주시(옥산교) 계측 유량을 경계조건으로 적용하였다. 연구결과 진주시 남강에서의 관측수위를 재현할 수 있는 광역 2차원 홍수 모형을 구축할 수 있었다. 또한 GPU 가속 기법의 적용 결과, CPU (Central Processing Unit)를 이용한 순차계산 및 병렬계산에 비해서 빠른 홍수모의가 가능하였다. 본 연구의 결과는 음해법을 적용하고 있는 2차원 범람모형의 GPU 가속 기법의 개발과 광역 지표면 홍수해석에 대한 연구에 기여할 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 주요 사업 사업으로 수행되었습니다(과제번호 20220251-001, (22주요-대3-임무(산업진흥))AI 기반 경남지역맞춤형 도로 침수 실시간 예측, 감시 및 운영기술 개발 (2/3)).

References

  1. Aureli, F., Prost, F., Vacondio, R., Dazzi, S., and Ferrari, A. (2020). "A GPU-accelerated shallow-water scheme for surface runoff simulations." Water, Vol. 12, No. 3, 637. doi: 10.3390/w12030637
  2. Choi, Y.S., and Kim, K.T. (2022). Grid based 2-dimensional land surface flood model user's manual. Korea Institute of Civil Engineering and Building Technology, pp. 7-13.
  3. Choi, Y.S., Kim, J.H., Choi, C.K., and Kim, K.T. (2019). "Development and evaluation of a 2-dimensional land surface flood analysis model using uniform square grid." Journal of Korea Water Resources Association, Vol. 52, No. 5, pp. 361-371.
  4. Chung, S.Y., Park, J.H., Hur, Y.T., and Jung, K.S. (2010). "Application of MPI technique for distributed rainfall-runoff model." Journal of Korea Water Resources Association, Vol. 43, No. 8, pp. 747-755. https://doi.org/10.3741/JKWRA.2010.43.8.747
  5. Courant, R., Friedrichs, K., and Lewy, H. (1956). On the partial difference equations of mathematical physics. AEC Research and Development Report, NYO-7689, AEC Computing and Applied Mathematics Centre, NY, U.S., pp. 63-76.
  6. Echeverribar, I., Morales-Hernandez, M., Brufau, P., and GarciaNavarro, P. (2020). "Analysis of the performance of a hybrid CPU/GPU 1D2D coupled model for real flood cases." Journal of Hydroinformatics, Vol. 22, No. 5 pp. 1198-1216. https://doi.org/10.2166/hydro.2020.032
  7. Hong, H.E., Ahn, H.T., and Myung, H.J. (2012). "An efficient incompressible free surface flow simulation usin GPU." Journal of Computational Fluids Engineering, Vol. 17, No. 2, pp. 35-41. https://doi.org/10.6112/kscfe.2012.17.2.035
  8. Kalyanapu, A.J., Shankar, S., Pardyjak, E.R., Judi, D.R., and Burian, S.J. (2011). "Assessment of GPU computational enhancement to a 2D flood model." Environmental Modelling & Software, Vol. 26, pp. 1009-1016. https://doi.org/10.1016/j.envsoft.2011.02.014
  9. Kim, B. (2019). Development of GPU-accelerated numerical model for surface and ground water flow. Ph. D. dissertation, University of Seoul, pp. 74-91.
  10. Kim, B., Park, S., and Kim, D.H. (2019). "Development of GPUaccelerated kinematic wave model using CUDA fortran." Journal of Korea Water Resources Association, Vol. 52, No. 11, pp. 887-894. https://doi.org/10.3741/JKWRA.2019.52.11.887
  11. Kim, T.H., Han, K.Y., and Kim, B.H. (2014). "Performance improvement of computing time of 2 dimensional finite volume model using MPI." Journal of Korea Water Resources Association, Vol. 47, No. 7, pp. 599-614. https://doi.org/10.3741/JKWRA.2014.47.7.599
  12. Liang, Q., Xia, X., and Hou, J. (2016). "Catchment-scale high-resolution flash flood simulation using the GPU-based technology." Procedia Engineering, Vol. 154, pp. 975-981. https://doi.org/10.1016/j.proeng.2016.07.585
  13. Liu, Q., Qin, Y., and Li, G., (2018). "Fast simulation of large-scale floods based on GPU parallel computing." Water, Vol. 10, 589.
  14. Park, J.H. (2014). "Parallel flood inundation analysis using MPI technique." Journal of Korea Water Resources Association, Vol. 47, No. 11, pp. 1051-1060. https://doi.org/10.3741/JKWRA.2014.47.11.1051
  15. Park, S., Kim, B., and Kim, D.H. (2019). "2D GPU-accelerated high resolution numerical scheme for solving diffusive wave equations." Water, Vol. 11, No. 7, 1447. doi: 10.3390/w11071447
  16. Scott, F.B. and Brett, F.S. (2002). "Finite-volume model for shallow-water flooding of arbitrary topography." Journal of Hydraulic Engineering, Vol. 128, No. 3. pp. 289-298.