DOI QR코드

DOI QR Code

SWAT model calibration/validation using SWAT-CUP III: multi-site and multi-variable model analysis

SWAT-CUP을 이용한 SWAT 모형 검·보정 III: 다중 관측 지점 및 변수를 고려한 분석

  • Cho, Younghyun (Korea-Mekong Water Resources Management Collaboration Research Center, K-water Research Institute)
  • 조영현 (K-water연구원 한-메콩물관리연구센터)
  • Received : 2020.10.17
  • Accepted : 2020.10.30
  • Published : 2020.12.31

Abstract

In this study, a criteria for the SWAT model calibration method in SWAT-CUP which considers multi-site and multi-variable observations was presented. For its application, the SWAT model was simulated using long-term observed flow, soil moisture, and evapotranspiration data in Yongdam study watershed, investigating the hydrological runoff characteristics and water balance in the water cycle analysis. The model was calibrated with different parameter values for each sub-watershed in order to reflect the characteristics of multiple observations through one-by-one calibration, appropriate settings of model simulation run/iteration number (1,000 simulation runs in the first iteration and then 500 simulation runs for the following iterations), and executions of partial and all run in SWAT-CUP. The flow simulation results of watershed outlet point, ENS 0.85, R2 0.87, and PBIAS -7.6%, were compared with the analysis results (ENS 0.52, R2 0.54, and PBIAS -22.4%) applied in the other batch (i.e., non one-by-one) calibration approach and showed better performances of proposed method. From the simulation results of a total of 15 years, it was found that the total runoff (streamflow) and evapotranspiration rates from precipitation are 53 and 39%, and the ratio of surface runoff and baseflow (i.e., sum of lateral and return flow, and recharge deep aquifer) are 35 and 65%, respectively, in Yongdam watershed. In addition, the analytical amount of available water (i.e., water yield), including the total annual streamflow (daily average 21.8 m3/sec) is 6.96 billion m3 per year (about 540 to 900 mm for sub-watersheds).

본 연구에서는 SWAT-CUP을 이용한 SWAT 모형의 검·보정 과정에서 다중 관측 지점 및 변수를 고려한 분석의 기준을 제시하였으며, 이의 적용을 위해 용담시험유역에서 장기 관측된 유량, 토양수분량, 그리고 증발산량을 활용한 모의수행 및 유역의 수문 유출특성과 물순환 관점의 물수지를 검토하였다. 모형은 유역 내 다중 관측 자료의 특성을 반영할 수 있도록 순차적 보정 방법과 SWAT-CUP에서의 최적 매개변수 값 산정을 위한 모의 실행 및 반복 횟수 설정(초기 1,000회 모의 실행, 이후 500회 모의 반복), 그리고 전체 및 부분 수행 등을 통해 소유역별 각기 다른 매개변수 값으로 보정하였으며(유역출구 유량 ENS 0.85, R2 0.87, 그리고 PBIAS -7.6%), 이를 유역출구 지점에 대해 순차적이 아닌 일괄 적용한 분석결과(ENS 0.52, R2 0.54, 그리고 PBIAS -22.4%)와 비교하여 그 방법상의 우위를 확인하였다. 총 15개년의 모의 결과로부터 용담댐 유역의 직접유출은 35%, 기저 및 중간유출과 회귀유량을 합한 값은 65%로 전체 유출률은 53%이며, 증발산량은 전체 강우의 39%에 상당하는 양이 발생하는 것을 파악할 수 있었으며, 아울러 소유역별 연간 총 유출량(일평균 21.8 m3/sec) 등을 포함한 물이용 가능 수량은 연간 총 6.96억 m3으로 소유역별로는 약 540 ~ 900 mm로 분석되었다.

Keywords

Acknowledgement

본 연구는 K-water(한국수자원공사)의 "용담시험유역 수문기상인자 관측자료 신뢰도 향상 및 물순환 분석 연구(G19023)"과제에 의해 수행되었습니다.

References

  1. Abbaspour, K.C. (2015). SWAT-CUP SWAT Calibration and Uncertainty Programs. User's Manual, Eawag: Swiss Federal Institute of Aquatic Science and Technology, pp. 1-100.
  2. Abbaspour, K.C., Yang, J., Maximove, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R. (2007). "Modeling hydrology and water quality in the pre-alpine/apline Thur watershed using SWAT." Journal of Hydrology, Elsevier, Vol. 333, pp. 413-430. https://doi.org/10.1016/j.jhydrol.2006.09.014
  3. Arnold, G., Srinivasan, R., Muttiah, R.S., and Williams, J.R. (1998). "Large area hydrologic modeling and assessment. Part I. model development." Journal of the American Water Resources Association, Wiley, Vol. 34, No. 1, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  4. Arnold, J.G., Allen, P.M., and Bernhardt, G. (1993). "A comprehensive surface-groundwater flow model." Journal of Hydrology, Elsevier, Vol. 142, pp. 47-69. https://doi.org/10.1016/0022-1694(93)90004-S
  5. Bai, J., Shen, Z., and Yan, T. (2017). "A comparison of single- and multi-site calibration and validation: A case study of SWAT in the Miyun reservoir watershed, China." Frontiers of Earth Science, Springer, Vol. 11, No. 3, pp. 592-600. https://doi.org/10.1007/s11707-017-0656-x
  6. Cao, W., Bowden, W.B., Davie, T., and Fenemor, A. (2006). "Multivariable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability." Hydrological Processes, Wiley, Vol. 20, No. 5, pp. 1057-1073. https://doi.org/10.1002/hyp.5933
  7. Dile, Y.T., Daggupati, P., George, C., Srinivasan, R., and Arnold, J. (2016). "Introducing a new open source GIS user interface for the SWAT model." Environmental Modeling & Software, Elsevier, Vol. 85, pp. 129-138. https://doi.org/10.1016/j.envsoft.2016.08.004
  8. Dong, F., Neumann, A., Kim, D.-K., huang, J., and Arhonditsis, G.B. (2019). "A season-specific, multi-site calibration strategy to study the hydrological cycle and the impact of extreme-flow events along an urban-to-agricultural gradient." Ecological Informatics, Elsevier, Vol. 54, p. 100933.
  9. Gong, Y., Shen, Z., Liu, R., Hong, Q., and Wu, X. (2012). "A comparison of single- and multi-gauge based calibrations for hydrlogical modeling of the upper Daning river watershed in China's three gorges reservoir region." Hydrology Research, IWA, Vol. 43, No. 6, pp. 822-832. https://doi.org/10.2166/nh.2012.021
  10. Jang, W.J., Lee, Y.G., and Kim, S.J. (2018). "Evaluation of multiobjective PSO algorithm for SWAT auto-calibration." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 9, pp. 803-812. https://doi.org/10.3741/JKWRA.2018.51.9.803
  11. Kim, S.M. (2017). "Evaluation of applicability of SWAT-CUP program for hydrologic parameter calibration in hardware watershed." Journal of the Korean Society of Agricultural Engineers, KSAE, Vol. 59, No. 3, pp. 63-70. https://doi.org/10.5389/KSAE.2017.59.3.063
  12. Lee, S., Baik, J., Choi, M., and Cho, Y. (2019). "Evaluation of the behavior and quality in soil moisture data: A case study of Yongdam study watershed." Journal of Korea Water Resources Association, KWRA, Vol. 52, No. 12, pp. 951-962. https://doi.org/10.3741/JKWRA.2019.52.12.951
  13. Migliaccio, K.W., and Chaubey, I. (2007). "Comment on Cao W, Bowden BW, Davie T, Fenemor A. 2006. 'Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability.' Hydrological Processes 20(5): 1057-1073." Hydrological Processes, Wiley, Vol. 21, No. 23, pp. 3226-3228. https://doi.org/10.1002/hyp.6491
  14. Odusanya, A.E., Mehdi, B., Schurz, C., Oke, A.O., Awokola, O.S., Awomeso, J.A., Adejuwon, J.O., and Schulz, K. (2019). "Multi-site calibration and validataion of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria." Hydrology and Earth System Sciences, EGU, Vol. 23, pp. 1113-1144. https://doi.org/10.5194/hess-23-1113-2019
  15. Williams, J.R., Nicks, A.D., and Arnold, J.G. (1985). "Simulator for water resources in rural basins." Journal of Hydraulic Engineering, ASCE, Vol. 111, No. 6, pp. 970-986. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:6(970)
  16. Winchell, M., and Srinivasan, R. (2012). SWAT Editor for SWAT 2012. Documentation, Blackland Research Center, Temple, TX, U.S., pp. 1-12.
  17. Yu, J., Noh, J., and Cho, Y. (2020a). "SWAT model calibration/validation using SWAT-CUP I: Analysis for uncertainties of objective functions." Journal of Korea Water Resources Association, KWRA, Vol. 53, No. 1, pp. 45-56. https://doi.org/10.3741/JKWRA.2020.53.1.45
  18. Yu, J., Noh, J., and Cho, Y. (2020b). "SWAT model calibration/validation using SWAT-CUP II: Analysis for uncertainties of simulation run/iteration number." Journal of Korea Water Resources Association, KWRA, Vol. 53, No. 5, pp. 347-356. https://doi.org/10.3741/JKWRA.2020.53.5.347
  19. Zhang, X., Srinivasan, R., and Liew, M.V. (2008). "Multi-site calibration of the SWAT model for hydrologic modeling." Transactions of the ASABE, ASABE, Vol. 51, No. 6, pp. 2039-2049. https://doi.org/10.13031/2013.25407