• Title/Summary/Keyword: 강수강화

Search Result 57, Processing Time 0.023 seconds

Stability Analysis of Levee by Infiltration Analysis for Watershed (도시하천 유역의 침투해석을 통한 제방의 안정성 평가)

  • Lee, Hoo Sang;Lee, Jea Joon;Heo, Jun Heang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.231-231
    • /
    • 2016
  • 산업혁명 이후 인간사회의 산업화 및 도시화의 가속으로 지구온난화는 기후변화를 야기해 왔으며, 이로 인한 각종 부정적인 영향과 심각성은 날로 커져가고 있는 현실이다. IPCC(Intergoverment Panel on Climate Change)는 기후변화의 주범인 온실가스를 감축할 지라도 기후의 탄성 때문에 앞으로 수세기 이상 계속 진행될 것으로 전망하였으며, 기후변화 영향의 근원적 방지는 불가능하기 때문에 결국 수자원 관리 측면에서도 기후변화에 적응하기 위한 각종 적응전략 개발의 필요성을 강조하였다(IPCC, 2007). 또한, 극한강수의 발현비율이 도시 및 비도시 지역의 구분 없이 과거 30년에 비해 크게 증가하고 있으며 이러한 추세는 수공구조물의 치수안전도 저하에 큰 영향을 준다. 우리나라는 그동안 하천, 유역 홍수저감 시설물과 댐 등 대형 수공구조물에 대한 안전성 평가를 주기적으로 수행해 왔으나 단순히 모니터링을 통하여 현재의 안전기준의 부합 여부만을 판단하는 수준에 그치고 있다. 장래 증가하는 홍수피해에 대처하기 위해서는 다양한 극한강우 및 극한홍수시나리오를 기반으로 시설물 설계기준별 홍수 위험도와 취약성을 평가하고, 극한홍수 방어기준을 재설정하여 현재 설계기준을 제고할 필요가 있으며, 시설물별 안전도 평가와 위험도 저감계획 및 경제성 평가를 종합적으로 고려한 실행프레임워크 개발이 시급한 실정이다. 따라서 본 연구에서는 SEEP/W 모형을 이용하여 일반적인 하천 제방을 바탕으로 침투해석을 실시하여 그 결과를 이용하여 안정성 평가에 대하여 검토하였다. 또한 기후변화에 따른 도시하천의 수문특성 변화분석 결과를 바탕으로 향후 발생할 수 있는 극치 수문사상의 값을 반영한 설계기준 강화 수방시설 계획 등의 연구에 활용하며, 여러 가지 수문학적 불확실성에 의하여 가변 가능한 도시하천 유역의 취약성 평가 및 위험도 분석을 통한 기후변화 대응과 수공구조물 설계 및 수방전략 수립에 활용하고자 한다.

  • PDF

The Buffer Capacity of the Carbonate System in the Southern Korean Surface Waters in Summer (하계 한국 남부해역 표층수의 탄산계 완충역량)

  • HWANG, YOUNGBEEN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.1
    • /
    • pp.17-32
    • /
    • 2022
  • The buffer capacity of southern Korean waters in summer was quantified using data set of temperature, salinity, dissolved inorganic carbon, total alkalinity obtained from August 2020 cruise. The geographical distribution and variability of six buffer factors, which amended the existing Revelle factor, are discussed their relationship with the hydrological parameters of temperature and salinity. The calculated results of six buffer factors showed the spatial variations according to the distributions of various water masses. The buffer capacity was low in the East Sea Surface Mixed Water (ESMW) and South Sea Surface Mixed Water (SSMW) where upwelling occurred, and showed an intermediate value in the Yellow Sea Surface Water (YSSW). In addition, the buffer capacity increased in the order of high temperature Tsushima Warm Current (TWC) and Changjiang Diluted Water (CDW). This means that the Changjiang discharge water in summer strengthens the buffer capacity of the study area. The highest buffer capacity of CDW is due to its relatively higher temperature and biological productivity, and a summer stratification. Temperature showed a good positive correlation (R2=0.79) with buffer capacity in all water masses, whereas salinity exhibited a poor negative correlation (R2=0.30). High temperature strengthens buffer capacity through thermodynamic processes such as gas exchange and distribution of carbonate system species. In the case of salinity, the relationship with buffer capacity is reversed because salinity of the study area is not controlled by precipitation or evaporation but by a local freshwater input and mixing with upwelled water.

Evaluation of the dose distribution in Mapcheck using Enhanced Dynamic Wedge (Enhanced Dynamic Wedge를 사용한 Mapcheck에서의 선량분포 평가)

  • Kang, Su-Man;Jang, Eun-Sun;Lee, Byung-Koo;Jung, Bong-Jae;Shin, Jung-Sub;Park, Cheol-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.343-349
    • /
    • 2012
  • Intensity Modulated Radiotherapy (IMRT) is increasing its use recently due to its benefits of minimizing the dose on surrounding normal organs and being able to target a high dose specifically to the tumor. The study aims to measure and evaluate the dose distribution according to its dynamic changes in Mapcheck. In order to verify the dose distribution by EDW angle($10^{\circ}$,$15^{\circ}$,$20^{\circ}$,$25^{\circ}$,$30^{\circ}$,$45^{\circ}$,$60^{\circ}$), field size (asymmetric field) and depth changes (1.5 cm, 5.0 cm) using IMRT in Clinac ix, a solid phantom was placed on the Mapcheck and 100MU was exposed by 6 MV, 10MV X-ray. Using a 6MV, 10MV energy, the percentage depth dose according to a dynamic changes at a maximum dose depth (1.5 cm) and at 5.0 cm depth showed the value difference of maximum 0.6%, less than 1%, which was calculated by a treatment program device considering the maximum dose depth at the center as 100%, the percentage depth dose was in the range between 2.4% and 7.2%. Also, the maximum value difference of a percentage depth dose was 4.1% in Y2-OUT direction, and 1.7% in Y1-IN direction. When treating a patient using a wedge, it is considered that using an enhanced dynamic wedge is effective to reduce the scattered dose which induces unnecessary dose to the surroundings. In particular, when treating a patient at clinic, a treatment must be performed considering that the wedge dose in a toe direction is higher than the dose in a heel direction.

Classification of the Core Climatic Region Established by the Entropy of Climate Elements - Focused on the Middle Part Region - (기후요소의 엔트로피에 의한 핵심 기후지역의 구분 - 중부지방을 중심으로 -)

  • Park, Hyun-Wook;Chung, Sung-Suk;Park, Keon-Yeong
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.159-176
    • /
    • 2006
  • Geographic factors and mathmatical location of the Korean Peninsula have great influences on the variation patterns and appearances over a period of ten days of summer precipitation. In order to clarify the influence of several climate factors on precise climate classification in the middle part region of the Korea, weather entropy and the information ratio were calculated on the basis of information theory and of the data of 25 site observations. The data used for this study are the daily precipitation phenomenon over a period of ten days of summer during the recent thirteen years (1991-2003) at the 25 stations in the middle part region of the Korea. It is divided into four classes of no rain, $0.1{\sim}10.0mm/day,\;10.1{\sim}30.0mm/day$, 30.1mm over/day. Their temporal and spatial change were also analyzed. The results are as follows: the maximum and minimum value of calculated weather entropy are 1.870 bits at Chuncheon in the latter ten days of July and 0.960 bits at Ganghwa during mid September, respectively. And weather entropy in each observation sites tends to be larger in the beginning of August and smaller towards the end of September. The largest and smallest values of weather representative ness based on information ratio were observed at Chungju in the beginning of June and at Deagwallyeong towards the end of July. However, the largest values of weather representativeness came out during the middle or later part of September when 15 sites were adopted as the center of weather forecasting. The representative core region of weather forecasting and climate classification in the middle part region of the Korea are inside of the triangle region of the Buyeo, Incheon, and Gangneung.

Atmospheric Vertical Structure of Heavy Rainfall System during the 2010 Summer Intensive Observation Period over Seoul Metropolitan Area (2010년 여름철 수도권 집중관측기간에 나타난 호우 시스템의 대기연직구조)

  • Kim, Do-Woo;Kim, Yeon-Hee;Kim, Ki-Hoon;Shin, Seung-Sook;Kim, Dong-Kyun;Hwang, Yoon-Jeong;Park, Jong-Im;Choi, Da-Young;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.148-161
    • /
    • 2012
  • The intensive observation (ProbeX-2010) with 6-hour launches of radiosonde was performed over Seoul metropolitan area (Dongducheon, Incheon Airport, and Yangpyeong) from 13 Aug. to 3 Sep. 2010. Five typical heavy rainfall patterns occurred consecutively which are squall line, stationary front, remote tropical cyclone (TC), tropical depression, and typhoon patterns. On 15 Aug. 03 KST, when squall line developed over Seoul metropolitan area, dry mid-level air was drawn over warm and moist low-level air, inducing strong convective instability. From 23 to 26 Aug and from 27 to 29 Aug. Rainfall event occurred influenced by stationary front and remote TC, respectively. During the stationary frontal rainy period, thermal instability was dominant in the beginning stage, but dynamic instability became strong in the latter stage. Especially, heavy rainfall occurred on 25 Aug. when southerly low level jet formed over the Yellow Sea. During the rainy period by the remote TC, thermal and dynamic instability sustained together. Especially, heavy rainfall event occurred on 29 Aug. when the tropical air with high equivalent potential temperature (>345 K) occupied the deep low-middle level. On 27 Aug. and 2 Sep. tropical depression and typhoon Kompasu affected Seoul metropolitan area, respectively. During these events, dynamic instability was very strong.

Functional Assessment for Preservation and Restoration of Wetland-type Old River Channel:Mangyoung River (습지형 구하도 보전 및 복원을 위한 기능 평가: 만경강 대상)

  • Hong, Il;Kang, Joon Gu;Kang, Su Jin;Yeo, Hong Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.213-220
    • /
    • 2012
  • Old river channels have been formed by engineering a straight channel in Korea. This can be classified as wetland-type or land-type. The wetland-type old river channel uses parts of agricultural water supply. However, the channels have been neglected since there are problems associated with poor water quality, reduced water level, ecosystem disturbance, etc. Thus, river maintenance through preservation and restoration of old river channel can be very effective in watershed management. To achieve this, functional assessment of wetland-type old river channel is a priority need. This study applied the wetland-type channel in Mangyoung river for functional assessment. It was formed these channels with regard to the following four major criteria (Natureless, Habitat, Water-friendliness and Water quality) and 21 indices. The indices managed by measuring depending in weights. Consequently, wetland-type channel in Mangyoung river was in good condition both natureless and habitat, while it was a fragile environment in water-friendliness and water quality. In particular, the areas where it has insufficiency water and water suffering from eutrophication needs urgent improvement. This results will be used to utilize wetland-type old river channel as watershed management.

Characteristics of a Heavy Rainfall Event in Yeongdong Region on 6 August, 2018 (2018년 8월 6일 발생한 영동지역 집중호우 사례에 대한 특성 연구)

  • Ahn, Bo-Young;Shim, Jae-Kwan;Kim, KyuRang;Kim, Seung-Bum
    • Journal of the Korean earth science society
    • /
    • v.41 no.3
    • /
    • pp.222-237
    • /
    • 2020
  • A heavy (93 mm hr-1) rainfall event accompanied by lightning occurred over Gangneung in the Yeongdong region of South Korea on August 6, 2018. This study investigated the underlying mechanism for the heavy rainfall event by using COMS satellite cloud products, surface- and upper-level weather charts, ECMWF reanalysis data, and radiosonde data. The COMS satellite cloud products showed rainfall exceeding 10 mm hr-1, with the lowest cloud-top temperature of approximately -65℃ and high cloud optical thickness of approximately 20-25. The radiosonde data showed the existence of strong vertical wind shear between the upper and lower cloud layers. Furthermore, a strong inversion in the equivalent potential temperature was observed at a pressure altitude of 700 hPa. In addition, there was a highly developed cloud layer at a height of 13 km, corresponding with the vertical analysis of the ECMWF data. This demonstrated the increased atmospheric instability induced by the vertical differences in equivalent potential temperature in the Yeongdong region. Consequently, cold, dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to rapidly developing convective clouds and heavy rainfall over Gangneung.

Future PMPs projection according to precipitation variation under RCP 8.5 climate change scenario (RCP 8.5 기후변화 시나리오의 강수량 변화에 따른 미래 PMPs의 전망)

  • Lee, Okjeong;Park, Myungwoo;Lee, Jeonghoon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.107-119
    • /
    • 2016
  • Since future climate scenarios indicate that extreme precipitation events will intensity, probable maximum precipitations (PMPs) without being taken climate change into account are very likely to be underestimated. In this study future PMPs in accordance with the variation of future rainfall are estimated. The hydro-meteorologic method is used to calculate PMPs. The orographic transposition factor is applied in place of the conventional terrain impact factor which has been used in previous PMPs estimation reports. Future DADs are indirectly obtained by using bias-correction and moving-averaged changing factor method based on daily precipitation projection under KMA RCM (HEDGEM3-RA) RCP 8.5 climate change scenario. As a result, future PMPs were found to increase and the spatially-averaged annual PMPs increase rate in 4-hour and $25km^2$ was projected to be 3 mm by 2045. In addition, the increased rate of future PMPs is growing increasingly in the future, but it is thought that the uncertainty of estimating PMPs caused by future precipitation projections is also increased in the distant future.

Estimating on the Erosion and Retreat Rates of Sea-cliff Slope Using the Datum-point in Pado-ri, the Western Coast of Korea (침식기준목을 이용한 파도리 해식애 사면의 침식·후퇴율 산정)

  • JANG, Dong-Ho;PARK, Ji-Hoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.71-82
    • /
    • 2012
  • This research was carried out to estimate annual erosion and retreat rates by using datum-point and to identify the characteristics and causes of seasonal variations of sea-cliff slope in Pado-ri, Taean-gun. In the result, the erosion and retreat rates of sea-cliff were increased from spring to summer. The rates were increased rapidly between August and October, caused by the effects of extreme weather events such as severe rainstorms and typhoons, etc. Since then, the erosion and retreat rates of sea-cliff were decreased gradually, but the rates were increased again in winter due to the storm surge and mechanical weathering resulting from the repeated freezing and thawing actions of bed rocks. The factors that affect erosion and retreat rates of sea-cliff include the number of days with antecedent participation and daily maximum wave height. In particular, it turned out that the erosion is accelerated by strong wave energy during storm surges and typhoons. The annual erosion and retreat rates of study area for the past two years(from May 2010 to May 2012) were approximately 44~60cm/yr in condition of differences in geomorphological and geological characteristics at each point. These erosion and retreat rates were found to be higher than results of previous researches. This is caused by coastal erosion forces strengthened by extreme weather events. The erosion and retreat process of sea-cliff in the study area is composed by denudation of onshore areas in addition to marine erosion(wave energy).

Parametric Study on Effect of Floating Breakwater for Offshore Photovoltaic System in Waves (해상태양광 구조물용 부유식 방파제의 파랑저감성능 평가)

  • Kim, Hyun-Sung;Kim, Byoung Wan;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.109-117
    • /
    • 2022
  • There has been an increasing number of studies on photovoltaic energy generation system in an offshore site with the largest energy generation efficiency, as increasing the researches and developments of renewable energies for use of offshore space and resources to replace existing fossil fuels and resolve environmental challenges. For installation and operation of floating photovoltaic systems in an offshore site with harsher environmental conditions, a stiffness of structural members comprising the total system must be reinforced to inland water spaces as dams, reservoirs etc., which have relatively weak condition. However, there are various limitations for the reinforcement of structural stiffness of the system, including producible size, total mass of the system, economic efficiency, etc. Thus, in this study, a floating breakwater is considered for reducing wave loads on the system and minimizing the reinforcement of the structural members. Wave reduction performances of floating breakwaters are evaluated, considering size and distance to the system. The wave loads on the system are evaluated using the higher-order boundary element method (HOBEM), considering the multi-body effect of buoys. Stresses on structural members are assessed by coupled analyses using the finite element method (FEM), considering the wave loads and hydrodynamic characteristics. As the maximum stresses on each of the cases are reviewed and compared, the effect of floating breakwater for floating photovoltaic system is checked, and it is confirmed that the size of breakwater has a significant effect on structural responses of the system.