• Title/Summary/Keyword: 강성 효과

Search Result 1,349, Processing Time 0.027 seconds

Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step (Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석)

  • Lee, Dongjun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.475-491
    • /
    • 2021
  • With the recent increase in available high-resolution (< ~1 m) satellite SAR images, the demand for precise registration of SAR images is increasing in various fields including change detection. The registration between high-resolution SAR images acquired in different look angle is difficult due to speckle noise and geometric distortion caused by the characteristics of SAR images. In this study, registration is performed in two stages, coarse and fine, using the x-band SAR data imaged at staring spotlight mode of TerraSAR-X. For the coarse registration, a method combining the adaptive sampling method and SAR-SIFT (Scale Invariant Feature Transform) is applied, and three rigid methods (NCC: Normalized Cross Correlation, Phase Congruency-NCC, MI: Mutual Information) and one non-rigid (Gefolki: Geoscience extended Flow Optical Flow Lucas-Kanade Iterative), for the fine registration stage, was performed for performance comparison. The results were compared by using RMSE (Root Mean Square Error) and FSIM (Feature Similarity) index, and all rigid models showed poor results in all image combinations. It is confirmed that the rigid models have a large registration error in the rugged terrain area. As a result of applying the Gefolki algorithm, it was confirmed that the RMSE of Gefolki showed the best result as a 1~3 pixels, and the FSIM index also obtained a higher value than 0.02~0.03 compared to other rigid methods. It was confirmed that the mis-registration due to terrain effect could be sufficiently reduced by the Gefolki algorithm.

Evaluation of the Effect of Waveform Micropiles on Reinforcement of Foundation Structures Through Field Load Tests (현장 재하시험을 통한 파형 마이크로파일의 기초보강 효과 분석)

  • Baek, Sung-Ha;Han, Jin-Tae;Kim, Seok-Jung;Kim, Joonyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.3
    • /
    • pp.29-40
    • /
    • 2023
  • In this study, we investigated the reinforcing effects of waveform micropiles in a stratigraphic setting comprising buried soil, weathered soil, and weathered rock. We conducted a series of field load tests and determined that waveform micropiles exhibited sufficient bearing capacity through frictional resistance in the soil layer and demonstrated favorable constructability in conditions with deep bedrock layers. Moreover, the vertical stiffness of waveform micropiles was approximately 2.2 times higher than that of conventional micropiles when subjected to the same design load. Pile group load tests comprising conventional and waveform micropiles showed that micropiles with higher stiffness carried a greater proportion of the load. Although there was no significant difference in the bearing capacity between conventional and waveform micropiles under the same design load, waveform micropiles with higher stiffness showed a load-carrying capacity 1.7 to 3.2 times greater than that of conventional micropiles. These findings suggest that waveform micropiles can be effectively used for foundation reinforcement and reduce the risk of foundation failure when increased loads due to modifications such as expansion remodeling are expected.

Effectiveness of Reinforcement for Transitional Zone between Tunnel and Earthwork Using the Large Sleeper (대형침목을 이용한 터널/토공 접속구간의 보강효과)

  • Choi, Chan-Yong;Lee, Jin-Wook;Kim, Hun-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.214-221
    • /
    • 2010
  • The transitional zone between tunnel and earthwork is one of the most vulnerable areas site for railway lines and because of differential settlement due to different stiffness of each supporting layer, it has to conducted a maintenance work constantly. In this study, it is conducted to compare the effect of reinforcement by wheel load and displacement of the sleepers after existing sleepers are replaced with the large sleepers for 20m long in-field transitional zone. Also, numerical parametric study using multi-layer elastic method has been performed to compare rail force, settlement and stresses of ballast while varying size and space of the sleeper. The field test and numerical results show that replacing the large sleepers improves about 10% of total settlement and coefficient of wheel force than conventional sleepers. Effectiveness of improvement is about 9.3%, 4%, 14.5% for rail seat force, settlement of sleepers and ballast pressure respectively with size of sleepers.

Long-term Flexural Behavior of RC Beams Strengthened in Flexure with NSM Fe-SMA Strips (표면매립된 철계-형상기억합금 스트립으로 휨 보강된 RC보의 장기 휨거동)

  • Hong, Ki-Nam;Lee, Sugyu;Han, Sang-Hoon;Kang, Panseung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.103-110
    • /
    • 2018
  • The long-term flexural behavior of reinforced concrete (RC) beams strengthened with an iron based-shape memory alloys (Fe-SMAs) by a near-surface mounted (NSM) method was evaluated. The pre-strained values of 2% and 4% and introduced prestressing force by an activation of a shape memory effect of the Fe-SMA strengthening material were considered as experimental variables. Deflections at the center of the RC beams were measured for six months after the 1 tonf concrete weight was loaded on the beam. Experimental results show that the deflections decreased because of the increased flexural stiffness of beams strengthened with the Fe-SMA strips. On the contrary, with increased pre-strained values, the deflection increased due to stiffness reduction of the strengthening material. It was confirmed that the specimens incorporating the prestressed force showed the deflection reduction of about 30%, compared to the ones without the prestressed force.

Vibration Reduction Effects of Stay Cable Due to Friction Damper (마찰댐퍼에 의한 사장 케이블의 진동저감 효과)

  • Kim, Hyung Ku;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • Stay cable has a strong axial rigidity due to large initial tension and, on the other hand, it has a weak laterally flexural rigidity. Wind loads or traffic loads cause the cables to vibrate significantly and affect the mechanical properties and the performance of cables of cable-stayed bridge (CSB). Therefore, the development of vibration reduction design is an urgent task to control the vibration vulnerable long-span bridges. As Friction damper (FD) shows to reduce the amplitude and duration time of vibration of cable of CSB from measured date in field test, friction damper can be considered that it is effective device significantly to reduce the amplitude and duration time in vibration of cable of CSB under traffic load, wind load and so on. Vibration characteristics of cable can change according to manufacturing method and type of established form. Nevertheless, analysis method in this study can present the design of friction damper for vibration reduction of cable of cable-stayed bridge from now on.

Implementation of Bond Slip Effect in Analysis of RC Beams Using Layerd Section Method (적층단면법에 의한 철근콘크리트 보 해석에서의 부착슬립효과)

  • Kim Jin-Kook;Kwak Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.1-13
    • /
    • 2006
  • An analytical procedure to analyze reinforced concrete(RC) beams and columns subject to monotonic and cyclic loadings is proposed on the basis of the layered section method. In contrast to the classical nonlinear approaches adopting the perfect bond assumption, the bond slip effect along the reinforcing bar is quantified with the force equilibrium and compatibility condition at the post cracking stage and its contribution is implemented into the reinforcing. The advantage of the proposed analytical procedure, therefore, will be on the consideration of the bond slip effect while using the classical layered section method without additional consideration such as taking the double nodes. Through correlation studies between experimental data and analytical results, it Is verified that the proposed analytical procedure can effectively simulate the cracking behavior of RC beams and columns accompanying the stiffness degradation caused by the bond slip.

속이 찬 실린더와 평판의 접합부에 관한 연구

  • 김윤영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2241-2251
    • /
    • 1992
  • This work is concerned with the investigation of end effects of a cylinder on a structure where a circular plate is attached to a solid circular cylinder. Three-dimensional elasticity solutions are used in a cylinder whereas the classical thin plate theory is employed for a plate. The end effect of the cylinder on the flexibility and the structural response is demonstrated by several numerical examples.

Dependence of Drawdown Pressure on the Hydrate Re-formation during Methane Hydrate Production and Its Inhibition with Hydrate Inhibitors (천연가스 하이드레이트 생산시 유발되는 하이드레이트 재생성의 압력효과 및 억제제의 저해효과)

  • Kang, Seong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.148.2-148.2
    • /
    • 2011
  • 천연의 메탄 하이드레이트를 생산하기 위한 방법으로는 크게 다음의 세 가지가 알려져 있다; 감압법, 열 자극법, 저해제 주입법. 갑압법이 가장 경제성이 높은 방법으로 보고 있으며, 이를 활용한 개발생산 시에는 해리 이후의 잔류 물에서 하이드레이트 전구체라고 알려진 하이드레이트 구조가 남아 있으며 이는 생산된 메탄 가스의 이송 과정에서 하이드레이트 재생성의 위험을 높이게 된다. 하이드레이트 재생성을 방지할 수 있는 한 가지 수단으로는 억제제를 주입하는 방법이 가능한데, 적절한 양을 주입함으로써 생산의 경제성을 높일 수 있다. 최근 들어 kinetic 억제제의 적용이 인기를 얻고 있는 바, 수용성 고분자인 이들 억제제를 적용하여 초기 하이드레이트 핵 생성을 지연시킬 수 있다. 이들 kinetic 억제제를 메탄 하이드레이트 생산 과정에서 투여하는 방법을 실험적으로 측정해 보았고, 잔류의 하이드레이트 구조에 대한 존재여부에 대하여 간접적으로 증명해보고자 하였다. kinetic 억제제로는 Poly Vinyl Caprolactam (PVCap)을 선택하였다. 해리압력, PVCap 주입 농도에 변화를 주면서 메탄 하이드레이트 생산, 수송과정에서 발생할 수 있는 하이드레이트 재생성 억제에 대한 효과를 실험적으로 측정하였다.

  • PDF

Flapwise Bending Vibration Analysis of Rotating Cross-ply Composite Beams (전단 및 단면 관성효과를 고려한 Cross-ply 복합재 회전 외팔보의 면외방향 굽힘 진동해석)

  • 이승현;신상하;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.994-999
    • /
    • 2003
  • A modeling method for the modal analysis of a rotating cross-ply composite beam based on Timoshenko beam theory is presented. To analyze the composite beam exactly, the effects of shear deformation and rotary inertia are included. Linear differential equations of motion are derived using the assumed mode method. For the modeling, hybrid deformation variables are employed and approximated to derive the equations of motion. The effects of the dimensionless angular velocity and the slenderness ratio parameter on the variations of modal characteristics are investigated

  • PDF

An Evaluation and Response Analysis of Hybrid Building System by Introducing Haunch at the Transfer fool (주상복합건물 전이층의 거동 분석과 헌치의 적용성 평가)

  • 장성훈;김희철;홍원기
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.63-72
    • /
    • 2001
  • 상부 벽체와 하부 골조로 구성되는 주상복합건물은 전이층에서 수직적인 강성과 강도의 불연속성을 갖는다. 이러한 복합구조는 전이층에서 춤이 큰 보에 의하여 하중이 전달되면 설계시 매우 중요하게 고려하여야 하는 사항이다. 그러나 이에 대한 연구가 충분히 이루어져 있지 않으며 실제 전이보의 설계시 춤을 매우 크게 하여 요구되는 강도보다 큰 안전율이 고려되고 있다. 본 연구에서는 전이층의 단순화모델을 이용하여 보의 높이 및 지지면의 길이에 따른 아치거동의 변화를 조사하였다. 유한요소법을 이용하여 구조물을 분석하고 두 변수를 포함하는 헌치부재를 이용하여 그 효과를 기존 시스템과 비교하였다. 중요 변수와 헌치의 기울기는 1:1의 비율에서 사장 효율이 좋은 것으로 나타났으며, 이러한 결과를 전이보를 대신하여 사용한 결과 중력방향의 상부 아치거동에 대하여 효과적으로 작용하는 것으로 나타났다. 또한 응력 집중부위에서의 응력 감소와 깊이 전이보의 높이감소에 효과적으로 작용하는 것으로 나타났다.

  • PDF