Implementation of Bond Slip Effect in Analysis of RC Beams Using Layerd Section Method

적층단면법에 의한 철근콘크리트 보 해석에서의 부착슬립효과

  • 김진국 (한국과학기술원 건설 및 환경공학과) ;
  • 곽효경 (한국과학기술원 건설 및 환경공학과)
  • Published : 2006.03.01

Abstract

An analytical procedure to analyze reinforced concrete(RC) beams and columns subject to monotonic and cyclic loadings is proposed on the basis of the layered section method. In contrast to the classical nonlinear approaches adopting the perfect bond assumption, the bond slip effect along the reinforcing bar is quantified with the force equilibrium and compatibility condition at the post cracking stage and its contribution is implemented into the reinforcing. The advantage of the proposed analytical procedure, therefore, will be on the consideration of the bond slip effect while using the classical layered section method without additional consideration such as taking the double nodes. Through correlation studies between experimental data and analytical results, it Is verified that the proposed analytical procedure can effectively simulate the cracking behavior of RC beams and columns accompanying the stiffness degradation caused by the bond slip.

이 논문에서는 적층단면법에 기초하여 단조하중 또는 반복하중을 받는 철근콘크리트 보 및 기둥 부재의 비선형 해석모델이 제안되었다. 완전부착 가정을 토대로 하고 있는 적층단면법은 콘크리트와 철근 사이의 부착슬럽 거동을 고려하지 못한다는 고전적 비선형 해석법과는 달리, 균열 발생시 철근을 따라 발생되는 부착슬립 거동을 힘의 평형관계와 변위의 적합조건으로 정량화하고, 그 결과로부터 철근의 강성을 보정해줌으로써 반영하도록 하였다. 이는 적층단면법에서 추가 자유도(double node)를 도입하지 않고 부착슬립효과를 고려할 수 있다는데 그 의의를 둘 수 있을 것이다. 나아가 제안된 방법에 의한 해석결과와 실험결과와의 비교를 통해, 제안된 방법은 부착슬립 거동에 의한 강성저하(stiffness degradation)를 동반하는 철근콘크리트 보 및 기둥 부재의 균열거동을 효과적으로 고려할 수 있음을 검증하였다

Keywords

References

  1. 건설교통부(1999) 콘크리트구조설계기준, 한국콘크리트학회
  2. 곽효경, 김선필(2000) 모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석, 한국전산구조공학회, 13(2), pp.245-256
  3. 곽효경, 김선필(2001) 반복하중을 받는 RC기둥의 비선형 해석을 위한 휨모멘트-곡률 관계의 개발, 대한토목학회, 21(6-A), pp.957-966
  4. 곽효경, 김진국(2001) 철근콘크리트 장주의 극한저항력, 대한토목학회, 21 (3-A), pp.413-424
  5. Bazant, Z.P., Oh, B.H.(1984) Deformation of Progressively Cracking Reinforced Concrete Beams, ACI, 81 (3), pp.268-278
  6. Belarbi, A., Hsu, T.T.C.(1994), Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened by Concrete, ACI Structural Journal, 91(4), pp.465-474
  7. Bertero, V.V., Liao, H., Bresler, B. (1969) Stiffness Degradation of Reinforced Concrete, Earthquake Engineering Research Center Report No. EERC 69/12, Univ. of California, Berkeley, California
  8. Chen, W.F. (1982) Plasticity in Reinforced Concrete, McGraw-Hill Book Company, 1982
  9. Clough, R.W., Johnston, S.B.( 1966) Effect of Stiffness Degradation on Earthquake Ductility Requirments, Proceedings of Japan Earthquake Engineering Symposium, October
  10. Comite Euro-International du Beton(1990) CEB-FIP Model Code 1990 First Draft, CEB, Bulletin d'Inforrnation 195, Paris
  11. Eligehausen, R., Popove, E.P., Bertero, V.V. (1983) Local Bond Stress-Slip Relationships of Deformed Bars under Generalized Excitations, Earthquake Engineering Research Center, Report No. UCB/EERC 83/23, University of California, Berkeley, California
  12. Filippou, F.C.. Popov, E.P.. Bertero, V.V.(1983) Effects of Bond Deterioration on Hysteretic Behavior of Reinfroced Concrete Joints, Earthquake Engineering Research Center, Report UCB/EERC-83/19, University of California, Berkeley, California
  13. Karson, I.D., Jirsa, J.O.(1969) Behavior of Concrete under Compressive Loading, Journal of the Structural Division, 95(December)
  14. Kim, J.K., Lee, S.S.(2000) The behavior of Reinforced Concrete Columns Subjected to Axial Force and Biaxial Bending, Engineering Structures, 23, pp. 1518-1528
  15. Kwak, H.G., Filippou, F.C.(1990) Finite Element Analysis of Reinforced Concrete Structures under Monotonic Loads, Report No. UCB/SEMM-90/14, Univ. of California, Berkeley, California
  16. Kwak, H.G,. Kim, S.P.(2002) Cyclic Moment-Curvature Relation of an RC Beam, Magazines of Concrete Research. 54(6), pp. 435-447 https://doi.org/10.1680/macr.54.6.435.38823
  17. Kwak, H.G., Kim, S.P., Kim, J.E.(2004) Nonlinear Dynamic Analysis of RC Frames using Cyclic Moment-Curvature, Structural Engineering and Mechanics, 17(3-4), pp. 357-378 https://doi.org/10.12989/sem.2004.17.3_4.357
  18. Low, S.S., Moehle, J.P., (1987) Experimental Study of Reinforced Concrete Columns Subjected to Multi-Axial Cyclic Loading, Earthquake Engineering Research Center, Report No. EERC 87/14, Univ. of California, Berkeley, California
  19. Ma, S.M., Bertero, V.V., Popov, E.P.(1976) Experimental and Analytical Studies on the Hysteretic Behavior of Reinforced Concrete Rectangural and T-beam. Earthquake Engineering Research Center, Report No: EERC 76/2, Univ. of California, Berkeley, California
  20. Menegotto, M., Pinto, P.E. (1973) Method of Analysis for Cyclically Loaded Reinforced Concrete Plane Frame Including Changes in Geometry and Nonelastic Behavior of elements under Combined Normal Force and Bending, Proceedings of IABSE Symposium on Resistance and ultimate Deformebility of Structures Acted on by Well Defined Repeated Loads, Lisbon
  21. Park, R., Paulay, T.(1975) Reinforced Concrete Structures, John Wiley & Sons, New York
  22. Pinto, P.E., Giuffre, A.(1970) Comportamento del Cemento Armato per Sollecitazioni Cicliche di Forte Intensita. Giornale del Genio Civile, 5
  23. Rehm, G.(1961) Uber die Grundlagen des Verbundes zwischen Stahl und Beton, Deutscher Ausschuss fur stahlbeton. 138
  24. Roufaiel, M.S.L., Meyer, C. (1987) Analytical Modeling of Hysteretic Behavior of R/C Frames, Journal of Structural Engineering. 113(3). pp. 429-444 https://doi.org/10.1061/(ASCE)0733-9445(1987)113:3(429)
  25. Sawyer, H.A.(1964) Design of Concrete Frames for Two Failure States. Proceedings of the International Symposium on the Flexural Mechanics of Reinforced Concrete. ASCE-ACI. Miami. November, pp. 405-431
  26. Scott, B.D., Park, R., Priestley, M.J.N.(1982), Stress-Strain Behavoir of Concrete Confined by Overlapping Hoops at Low and High Strain Rates. ACI, 79(1), pp. 13-27
  27. Shima, H., Chou, L., Okamura, H.(1987), Micro and Macro Model for Bond Behavior in RC, Journal of the Faculty of Engineering, The Unisversity of Tokyo(B), 39(2), pp.133-194
  28. Shin, H., Maekawa, K.. Okamura, H.(1988) Analytical Approach of RC Members Subjected to Reversed Cyclic in-Plane Loading, Proceeding of JCI Colloquium on Ductility of Concrete Structure and its Evaluation, pp. 245-256
  29. Spacone, E., Limkatanyu, S. (2000) Responses of Reinforces Concrete Members Including Bond-Slip Effects. ACI Strucutral Journal, 97(6). pp. 831-839
  30. Stevens, N.J., Uzumeri, S.M., Collins. M.P., Will, G.T.(1991) Constitutive Model for Reinforced Concrete Finite Element Analysis. ACI Strucutural Journal, 88(1). pp. 49-59
  31. Takeda, T., Sozen, M.A., Nielsen, N.N.(1970) Reinforced Concrete Response to Simulated Earthquake, Journal of the Structural Division. ASCE, 96(ST-12), pp. 2557-2573
  32. Vecchio, F.J. (1999) Towards cyclic load modeling of reinforced concrete. ACI Structural Journal, 96, pp. 193-202
  33. Wight, J.K., Sozen, M.A.(1975) Strength Decay of RC Columns under Shear Reversals. Journal of the Structural Division, 101(ST5), pp. 1053-1065