• Title/Summary/Keyword: 감속기어

Search Result 134, Processing Time 0.024 seconds

The Structural analysis of Pin-jack type winch for Floodgate (수문용 핀잭 권양기 구조 해석)

  • Lim, Tae-Yang;Nam, Mi-Sung;Kim, Key-Sun;Jang, Tae-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.877-880
    • /
    • 2009
  • 수문의 개폐는 모터에 의한 회전이 권양기에서 감속 되고 증폭된 회전력이 랙에 의하여 직선 운동으로 바뀌어 회전 방향에 따라 상하로 움직여 열리고 닫히게 된다. 권양기는 상부 모터, 감속기, 메인 감속 장치, 동력 차단장치, 좌측 동력변환장치, 우측 동력 변환장치로 구성된다. 본 논문에서는 핀잭식 권양기의 최적 설계를 위하여 보조기어와 메인기어 트레인의 구조 해석, 진동해석 및 설계와 하중에 버틸 수 있는 상부구조물 몸체의 최적 설계를 통하여 설계변수를 확립한다.

  • PDF

Vibration Characteristics and its Countermeasure of Orifice Pipe for Reduction Gear Lubrication of Azimuth Thruster (아지무스 추진기의 감속 기어 윤활용 오리피스 파이프 진동특성과 방진대책)

  • Eam, Gitak;Barro, Ronald D.;Lee, Donchool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.555-558
    • /
    • 2013
  • A type of electric propulsion employed by specialized purpose vessels or offshore is the azimuth thruster. Azimuth thruster application had been increasing recently and resulted to excellent vessel maneuverability. However, this system is very complex and some of its major component being exposed under the seawater level presents difficulty in sealing design. For Polar class icebreaker operating in extreme sea condition, this requires a high level of reliability and safety. In this study, the characteristics of lubricating orifice pipe structural vibration installed at the lower reduction gear were investigated and analyzed through beam analysis theory and comparison of experiments. Propeller excitation and the resonant modes of vibration causing excessive vibration and suitable countermeasures to prevent damage due to vibration fatigue on the pipe are presented.

  • PDF

Development of High-Ratio Planetary Reduction Gears Applied Differential Ring Gear Type (차동 링기어 방식의 고비율 유성기어 감속기 개발)

  • 박규식;이기명;김유일
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.497-502
    • /
    • 1997
  • Automation facilities of greenhouses have been continuously developed. However, the conventional two-stage worm gear reducer reveals some problems, including low transmission efficiency. The worm gear reducer also have some difficulties in manufacturing and short life. Therefore, this study was performed to develop a planetary gear reducer, having a high Sear reduction ratio and high torque transmission efficiency. The planetary gear system consisted of a fixed ring gear and a 2-teeth differential ring gear turning slow, as the planetary pinion orbits fast around the fixed ring gear. The developed gear system can achieve a high speed reduction rate at one stage. The reducing system was employed to the greenhouse ventilation system. The reducer has the transmission efficiency of 70.5%, 2∼3 times longer life time, and twofold roll-up torque at an affordable price, comparing with conventional reducers. This reducer can be also applied to many industrial equipments, such as industrial crane, hoist, elevator and gondola etc.

  • PDF

The research regarding the epicyclic gear system development for a rate of high-reduction embodiment (고감속비 구현을 위한 유성기어 시스템 개발에 관한 연구)

  • Han M.S.;Kim S.Y.;Park J.W.;Lee S.S.;Kim S.K.;Jeon E.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.347-348
    • /
    • 2006
  • Among various gear system, planetary gear system has the best characteristics in high efficiency, excellent strength capacity, easy convertible speed control, and compact design aspect. Strength of gear is considered as the most important design factor. We have studied tooth form and the planetary gear system that have high reduction gear ratio is created by using the involute curve.

  • PDF

Optimization of Gear Webs for Rotorcraft Engine Reduction Gear Train (회전익기용 엔진 감속 기어열의 웹 형상 최적화)

  • Kim, Jaeseung;Kim, Suchul;Sohn, Jonghyeon;Moon, Sanggon;Lee, Geunho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.953-960
    • /
    • 2020
  • This paper presents an optimization of gear web design used in a main gear train of an engine reduction gearbox for a rotorcraft. The optimization involves the minimization of a total weight, transmission error, misalignment, and face load distribution factor. In particular, three design variables such as a gear web thickness, location of rim-web connection, and location of shaft-web connection were set as design parameters. In the optimization process, web, rim and shaft of gears were converted from the 3D CAD geometry model to the finite element model, and then provided as input to the gear simulation program, MASTA. Lastly, NSGA-II optimization method was used to find the best combination of design parameters. As a result of the optimization, the total weight, transmission error, misalignment, face load distribution factor were all reduced, and the maximum stress was also shown to be a safe level, confirming that the overall gear performance was improved.

Speed Control Of The Magnet Gear-Based Speed Reducer For Non-contact Power Transmission (비접촉 동력 전달을 위한 마그네트 기어 기반 감속기의 속도 제어에 관한 연구)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.380-388
    • /
    • 2016
  • Using the magnet gear, it is possible to transmit power without mechanical contact. As the drive shaft in a magnet gear-based speed reducer system is isolated from the drive shaft, the system is a two-inertia resonance system that should cope with an external load with the limited air-gap stiffness. On the other hand, the drive shaft or low-speed side is controlled only by the torque of the drive shaft through an air-gap, and the excessive oscillation or the slip can then be generated because of an abrupt disturbance that is different from the general mechanical gear system. Therefore, the disturbance loaded at the low speed side should be measured or estimated, and considered in the control of the driving shaft. This paper proposes a novel full-state feedback controller with a reduced-order observer for the speed reducer system using a magnet gear with a unified harmonic modulator. The control method was verified by simulation and experiment. To estimate the load at the low speed side, a novel observer was designed, in which the new state variable is introduced and the new state equation is formulated. Using a full-state feedback controller including the observer, the test result against disturbance was compared with two D.O.F PI speed controllers. The pole slip was compensated within relatively a short time, and the simulation result about the estimated variable shows a similar tendency to the test result. The test results showed that the magnet gear-based reducer can be applied to an accurate servo system.