• Title/Summary/Keyword: 갈색퍼짐병

Search Result 13, Processing Time 0.02 seconds

Biological Control of Large Patch Disease by Streptomyces spp. in Turfgrass (스트렙토마이세스를 이용한 잔디 갈색퍼짐병의 생물적 방제)

  • Jeon, Chang Wook;Lee, Jung Han;Min, Gyu Young;Kwak, Youn-Sig
    • Weed & Turfgrass Science
    • /
    • v.5 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • Large patch disease in Zoysia japonica Steud. is the most destructive disease in turfgrass. For large patch management, it has been dependent on chemical controls but pesticides are harmful to soil, water and biodiversity. In this study, we evaluated 4 Streptomyces spp. strains (S2, S5, S8 and S12) which were selected in previous studies using metagenome approaches. Root colonization of the strains, large patch suppressing effect and the pathogen density change in actual golf course were investigated to evaluate biological control potential of the strains. All strains exhibited reliable root colonization ability that strains populations were higher than $6log\;cfu\;g^{-1}$ in turfgrass rhizosphere. The pathogen density, with S8 treatment, was detected average of 0.7 after a week and average of 1.2 after 4 weeks. Disease control and suppressive the pathogen population by S8 strain showed higher efficiency than other strains. S8 was applied in an actual golf course for the large patch control and pathogen density. The pathogen density in S8 treatment plot was detected below 1.6 per toothpick and lower compared with untreated plot. The results indicated that pathogen density was suppressed by S8 and the stain has great potential as a biological control agent for the large patch.

Efficacy of Antagonistic Bacteria for Biological Control of Rhizoctonia Blight (Large patch) on Zoysiagrass (잔디 갈색퍼짐병(Large patch)의 생물학적 방제를 위한 길항 미생물의 선발과 효력 검정)

  • Jung, Woo-Chul;Shin, Taek-Su;Kim, Bong-Su;Im, Jae-Seong;Lee, Jae-Ho;Kim, Jin-Won
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • Rhizoctonia blight (large patch) caused by Rhizoctonia solani AG2-2 is one of the major diseases on zoysiagrass in golf courses. In this study, anatgonistic bacteria to R. solani AG2-2 were selected in vitro tests using confrontation bioassay and triple layer agar diffusion method. The most active bacteria, Bacillus subtilis CJ-9 were tested for controlling large patch in pots. Relative Performance Indies (RPI) was used as a criterion for the selection of potential biocontrol agent. B. subtilis CJ-9 showed resistance to major synthetic agrochemicals used in golf course. In field tests at golf course, B. subtilis CJ-9 was more effective in suppression of large patch severity and population development of R. solani AG2-2 in soil than chemical fungicides. B. subtilis CJ-9 could be an alternative to chemical fungicides for eco-friendly management of large patch on zoysiagrass.

Application of Paraffin Oil for Control of Large Patch on Zoysia japonica (들잔디 갈색퍼짐병 방제를 위한 파라핀오일의 살포)

  • Lee, Dong-Woon;Lee, Sang-Myeong;Kim, Dong-Su;Choi, Tae-Hyuk;Chang, Tae-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.17-23
    • /
    • 2012
  • Large patch caused by Rhizoctonia solani AG2-2 (IV) is one of the most serious diseases in zoysiagrass. The objectives of this research were to evaluate the in vitro fungicidal effect and in field control of large patch disease of Paraffin oil. In the field experiments, paraffin oil was applied with 1 L/$m^2$ after diluted at 5 ml to 20 ml of oil/1 L of water for the control of large patch on Zoysia japonica in golf course. The same material was tested for inhibition of mycelial growth in vitro. Paraffin oil at 0.5% and 2.0% had a fungicidal effect by 43 to 67% on R. solani AG2-2 (IV) in vitro. In two locations of the field experiments, the paraffin oil provided moderate protection of large patch. It was effective in suppressing large patch development by 48.0% in comparison with a water check after one time application on mid-September in golf course. Paraffin oil may be used as an alternative control agent for environment friendly management of large patch on Zoysiagrass in golf course.

Turfgrass Probiotics Reduce Population of Large Patch Pathogen and Improve Growth of Zoysiagrass (유용미생물 처리에 따른 들잔디 재배지의 갈색퍼짐병 병원균 감소와 잔디생육 촉진 효과)

  • Bae, Eun-Ji;Cheon, Chang Wook;Hong, A-Reum;Lee, Kwang-Soo;Kwak, Youn-Sig
    • Weed & Turfgrass Science
    • /
    • v.6 no.3
    • /
    • pp.249-261
    • /
    • 2017
  • To prevent large patch disease, caused by Rhizoctonia solani AG-2-2, in zoysiagrass a fungicide, Tebuconazole and three microbial agents Streptomyces sp. Burkholderia sp. and Streptomyces sp. S8 were applied in commercial turfgrass cultivation field in Sanchung, Gyeongnam, Korea. All treatments showed 50% reduced the pathogen population in thatch layer throughout the yearly cultivation period. Not only reduced the pathogen population, Tebuconazole, Streptomyces sp. Burkholderia sp. and Streptomyces sp. S8 treatment also enhanced turfgrass growth, chlorophyll and proline content. Malondialdehyde contents in each treatment was reduced from 6.2~28.9% when compared with the control. Taken together, reduction of pathogen population in soil lowered the disease incidence or severity, and allowed the turfgrass developed as normal condition. The results suggested that the selected microbial agents may use as biological control and growth promotion agents for the Zoysia turfgrass.

Isolation and Selection of Antagonistic Microbes for Biological Control of Zoysiagrass Large Patch Disease (한국잔디 갈색퍼짐병의 생물학적 방제를 위한 길항미생물의 분리 및 선발)

  • Ma, Ki-Yoon;Kwark, Soo Nyeon;Lee, Geung-Joo
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.657-665
    • /
    • 2013
  • A large patch disease caused by Rhizoctonia solani AG2-2 (IV) is a serious problem in Korean lawngrass (Zoysia japonica) sites including golf courses and sports fields in Korea. Antagonistic microorganisms against R. solani AG2-2 (IV) were isolated from various forest and crop soil sources in Southern Korea. Among the 61 isolates, I-009, FRIN-001-1, and YPIN-022 strains showing dramatic inhibition of the mycelial growth of R. solani AG2-2 (IV) in the pairing culture were selected as the most potential antagonistic microorganisms for this study. Based on the 16s RNA sequence comparison, I-009 and FRIN-001-1 isolates were identified as Bacillus spp., while YPIN-022 isolate belongs to the genus Pseudomonas. The greater inhibition (clear) zone between two edges of the selected and pathogenic microbes ranged from 11 to 15 mm in three selections, but the others averaged to 7 mm out of 30 mm distance. In another antifungal test using culture filtrate, those three isolates represented a range of 51.7 to 63.5% suppression potential. The selected isolates also inhibited significantly the stem-segment colonization by R. solani AG2-2 (IV) in vivo test by 28.1%, 43.0%, and 23.7% when inoculated with I-009, FRIN-001-1, and YPIN-022, respectively. The highest antagonistic activity for the large patch disease was demonstrated by the isolate FRIN-001-1, which will be useful for developing a bio-pesticide against Rhizoctonia.

A Detail Investigation of Major Diseases Occurrence and Pathogen Population on Turfgrass Cultivation in Nationwide (국내 잔디 재배지 주요 병해 발생 및 병원균 밀도 조사)

  • Min, Gyu Young;Lee, Jung Han;Kwak, Youn-Sig
    • Weed & Turfgrass Science
    • /
    • v.3 no.2
    • /
    • pp.121-129
    • /
    • 2014
  • We investigated turfgrass diseases and inoculum density at nationwide turfgrass cultivation sites in year of 2013. Occurrences of large patch and rust disease appeared in September. Brown patch recorded in September to October at Namhea and Pythium blight disease occurred outbreaks in early July at Namhea site. Some sites in Namhea damaged 3% area of total cultivation field by Sclerotinia homoeocarp. In Daepyeong (Gyeongnam), Fairy ring and large patch were recorded. Severe takeall and fairy ring have been observed in Gochang-si. Multi-site in Cheongju-si, brown patch was observed in pandemic level. Interesting enough, a cool-season turfgrass cultivate sites in Pyeongtaek-si brown patch, leaf blast, summer patch, and Curvularia leaf spot were investigated during the surveys period. Inoculum densities (Rhizoctonia spp.) at turfgrass cultivations sites were increased as cumulatively in all survey sites. The investigation result indicated that the disease occurrence and pathogens are similar as diseases in golf courses.

Soil Microbial Community Analysis in Large Patch (Rhizoctonia solani AG2-2 IV) (갈색퍼짐병 발병토양의 미생물 군집 분석)

  • Lee, Jung Han;Min, Gyu Young;Shim, Gyu Yul;Jeon, Chang Wook;Choi, Su min;Han, Jeong Ji;Kwak, Youn-Sig
    • Weed & Turfgrass Science
    • /
    • v.4 no.2
    • /
    • pp.124-128
    • /
    • 2015
  • Large patch, caused by Rhizoctonia solani AG2-2 IV, is a soil-born disease that is the most important of warm season turfgrass such as zoysia and Bermuda grass. This study was conducted to analysis of the soil microbial community structure on large patch. Center of the large patch (CLC), edge (CLE) and healthy (CLH) part of microbial communities were examined using metagenomics in Phylum level. Distribution trends of the rhizosphere microorganisms were similar to the order Proteobacteria, Acidobacteria, Chloroflexi, Firmicutes, Planctomycetes, Gemmatimonadetes, Nitrospira, Cyanobactria and Verrucomicrobia in soil collections. Contrastively Actinobacteria was more 56% abundant in healthy part soil (16%) than in the center (9.28%) or edge (10.84%) parts. Taxonomic distributions were compared among the CLC, CLE and CLH, total 6,948 OTUs were detected in the CLC, 6,505 OTUs for the CLE and 5,537 OTUs were detected in the CLE. Distributions of Actinobacteria OTUs were appeared 615 OTUs in the CLC, 709 OTUs in the CLE and 891 OTUs in the CLH. Among Actinobacteria, 382 OTUs were overlapped in the all soils. Not matched OTUs of CLH (286 OTUs) was detected 23 times higher than CLC (91 OTUs) and CLE (126 OTUs).

Antibiotic Properties of Helicosporium sp. KCTC 0635BP to Rhizoctonia solani AG2-2 IV (Rhizoctonia solani AG2-2 IV에 대한 Helicosporium sp. KCTC 0635BP의 항균활성)

  • Lee, Sang Myeong;Kim, Dong Soo;Lee, Kwang-Soo;Lee, Chong-Kyu;Lee, Dong Woon
    • Weed & Turfgrass Science
    • /
    • v.2 no.2
    • /
    • pp.202-206
    • /
    • 2013
  • Biocontrol potential of an isolate of Helicosporium spp. against Rhizoctonia solani, Fusarium oxysporium and Phytophthora drechsleri was evaluated in vitro and in vivo. A selected biocontrol agent designated as Helicosporium 0635BP strongly inhibited growth and lysed mycelium of Rhizoctonia solani and Fusarium oxysporium on PDA. Autoclaved culture filtrate of the agent also completely inhibited growth of the turfgrass large patch pathogen, R. solani AG2-2 IV at the concentration of 50 ml $L^{-1}$. The pathogen was killed when dipped under the 20% filtrate for four hours or 50% for one hr. In a field trial, plots applied with the crude or times diluted culture filtrate showed 100% control efficacy of the turfgrass large patch as a chemical applied for a comparison. Results indicated that Helicosporium 0635BP is a promising biocontrol agent on control of the turfgrass large patch disease and its culture filtrate contained unknown heat suitable antifungal substance (s). Further studies on mass production, purification and identification of the unknown compound (s) are in progress for practical use.

Control of Large Patch Catch by Rhizoctonia solani AG2-2 by Combined Application of Antagonists and Chemicals (길항균과 농약의 조합처리에 의한 갈색퍼짐병(라지패취) 방제)

  • 심규열;김희규
    • Asian Journal of Turfgrass Science
    • /
    • v.13 no.3
    • /
    • pp.131-138
    • /
    • 1999
  • A synergistic effect of biocontrol agent and chemicals on control of the large patch on turfgrass caused by Rhizoctonia solani AG2-2 was evaluated. Chemicals; mepronil, toclofos-methyl and iprodione inhibited 90∼100% mycelial growth of R. solani AG1 and AG2-2 in vitro. While on the other, the chemicals inhibited only 0∼5%, 18∼46% and 30∼67% of mycelial growth of the antagonists, respectively. In field application, toclofos-methyl was the best to suppress the disease in single application, however, the combination of mepronil and T. viride 41D showed highest disease control effect among combinations of antagonists and chemicals. Effect of the combination of mepronil and T. viride 41D was similar to that of toclofos-methyl and T. viride 41D stage of disease development, but became higher in six week late. Results indicated that the combined application of selected antagonistic agent and chemical increased control efficasy of turgrass large patch.

  • PDF

Isolation and Identification of Antagonistic Bacteria for Biological Control of Large Patch Disease of Zoysiagrass Caused by Rhizoctonia solani AG2-2 (IV) (들잔디 갈색퍼짐병의 생물학적 방제를 위한 길항 세균의 분리와 동정)

  • Song, Chi-Hyun;Islam, Md. Rezuanul;Chang, Tae-Hyun;Lee, Yong-Se
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.8-16
    • /
    • 2012
  • The objective of this study was to identify bacterial antagonists of R. solani AG2-2 (IV) on zoysiagrass and to evaluate their antifungal activity in vitro and in vivo to select an antagonistic isolate. Antagonistic isolates that inhibit large patch disease caused by R. solani AG2-2 (IV) in zoysiagrass were selected from several soils, and their antagonistic activities were investigated in vitro and in vivo. Of 216 bacterial isolates, 67 inhibited several plant pathogenic fungi. The isolates that inhibited stem-segment colonization by R. solani AG2-2 (IV) in zoysiagrass were tested in a growth chamber. Eleven isolates were active as plant growth promoting isolates. Among them, five plant growth promoting isolates and their concentration dependent efficiency on zoysiagrass following inoculation with R. solani AG2-2 (IV) was evaluated. Isolate H33 was one of the potential antagonistic isolates, and it was further tested against various plant pathogens. H33 not only suppressed the disease caused by R. solani AG2-2 (IV) on zoysiagrass but also promoted leaf weight and leaf height of zoysiagrass under growth chamber and greenhouse conditions. The H33 isolate, which belongs to Streptomyces arenae, was identified through physiological, biochemical, and 16S rDNA studies. Further studies will investigate the cultural characterization of S. arenae H33 and isolation and identification of antifungal substance produced by S. arenae H33.