• Title/Summary/Keyword: 가중계수

Search Result 326, Processing Time 0.026 seconds

Correlation analysis between energy indices and source-to-node shortest pathway of water distribution network (상수도관망 수원-절점 최소거리와 에너지 지표 상관성 분석)

  • Lee, Seungyub;Jung, Donghwi
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.989-998
    • /
    • 2018
  • Connectivity between water source and demand node can be served as a critical system performance indicator of the degree of water distribution network (WDN)' failure severity under abnormal conditions. Graph theory-based approaches have been widely applied to quantify the connectivity due to WDN's graph-like topological feature. However, most previous studies used undirected-unweighted graph theory which is not proper to WDN. In this study, the directed-weighted graph theory was applied for WDN connectivity analyses. We also proposed novel connectivity indicators, Source-to-Node Shortest Pathway (SNSP) and SNSP-Degree (SNSP-D) which is an inverse of the SNSP value, that does not require complicate hydraulic simulation of a WDN of interest. The proposed SNSP-D index was demonstrated in total 42 networks in J City, South Korea in which Pearson Correlation Coefficient (PCC) between the proposed SNSP-D and four other system performance indicators was computed: three resilience indexes and an energy efficiency metric. It was confirmed that a system representative value of the SNSP-D has strong correlation with all resilience and energy efficiency indexes (PCC = 0.87 on average). Especially, PCC was higher than 0.93 with modified resilience index (MRI) and energy efficiency indicator. In addition, a multiple linear regression analysis was performed to identify the system hydraulic characteristic factors that affect the correlation between SNSP-D and other system performance indicators. The proposed SNSP is expected to be served as a useful surrogate measure of resilience and/or energy efficiency indexes in practice.

Optimization of PRISM parameters using the SCEM-UA algorithm for gridded daily time series precipitation (시계열 강수량 공간화를 위한 SCEM-UA 기반의 PRISM 매개변수 최적화)

  • Kim, Yong-Tak;Park, Moonhyung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.903-915
    • /
    • 2020
  • Long-term high-resolution hydro-meteorological data has been recognized as an essential element in establishing the water resources plan. The increasing demand for spatial precipitation in various areas such as climate, hydrology, geography, ecology, and environment is apparent. However, potential limitations of the existing area-weighted and numerical interpolation methods for interpolating precipitation in high altitude areas remains less explored. The proposed PRISM (Precipitation-Elevation Regressions on Independent Slopes Model) model can produce gridded precipitation that can adequately consider topographic characteristics (e.g., slope and altitude), which are not substantially included in the existing interpolation techniques. In this study, the PRISM model was optimized with SCEM-UA (Shuffled Complex Evolution Metropolis-University of Arizona) to produce daily gridded precipitation. As a result, the minimum impact radius was calculated 9.10 km and the maximum 34.99 km. The altitude of coastal weighted was 681.03 m, the minimum and maximum distances from coastal were 9.85 km and 38.05 km. The distance weighting factor was calculated to be about 0.87, confirming that the PRISM result was very sensitive to distance. The results showed that the proposed PRISM model could reproduce the observed statistical properties reasonably well.

A Sub-grid Scale Estimation of Solar Irradiance in North Korea (북한지역 상세격자 디지털 일사량 분포도 제작)

  • Choi, Mi-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • Reliable information on the surface solar radiation is indispensable for rebuilding food production system in the famine plagued North Korea. However, transfer of the related modeling technology of South Korea is not possible simply because raw data such as solar radiation or sunshine duration are not available. The objective of this study is restoring solar radiation data at 27 synoptic stations in North Korea by using satellite remote sensing data. We derived relationships between MODIS radiation estimates and the observed solar radiation at 18 locations in South Korea. The relationships were used to adjust the MODIS based radiation data and to restore solar radiation data at those pixels corresponding to the 27 North Korean synoptic stations. Inverse distance weighted averaging of the restored solar radiation data resulted in gridded surfaces of monthly solar radiation for 4 decadal periods (1983-1990, 1991-2000 and 2001-2010), respectively. For a direct application of these products, we produced solar irradiance estimates for each sub-grid cell with a 30 m spacing based on a sun-slope geometry. These products are expected to assist planning of the North Korean agriculture and, if combined with the already prepared South Korean data, can be used for climate change impact assessment across the whole Peninsula.

Study on the Maintenance Cost of Railway Infrastructure Using Line Classification and TMV Data (선로등급 및 검측차 검측정보를 고려한 철도시설 유지보수비용 산정에 관한 연구)

  • Kim, In Kyum;Lee, Jun S.;Choi, Il Yoon;Lee, Hoo Seok
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.275-287
    • /
    • 2017
  • During the feasibility study of new rail lines, maintenance cost of railway infrastructure has mostly been estimated based on the track length and on simplified parameters; however, the estimation reliability can be improved by employing the correction factor from UIC 715, as well as the line classification in UIC 714. The correlations between maintenance cost and various parameters such as weighted track length based on line classification, radius of curvature, gradient and worn -out rate have been analyzed according to the case studies. Prediction of the maintenance cost has been carried out using the cost data, which were representative of the whole cost data; as a result, it was demonstrated that a cost model based on the line classification and the correction factor was more reliable than the existing models. Furthermore, possibilities of using data from both the track measurement vehicle and from the maintenance information system, which are under development, have been investigated and, based on this investigation, a combined cost model using line classification, radius of curvature, gradient and worn-out rate, among other factors, will be proposed in the near future.

A Study on the Optimization of New Renewable Energy Systems in Public-Purpose Facilities (공공용 업무시설의 신재생에너지시스템 최적화 연구)

  • Lee, Yong-Ho;Seo, Sang-Hyun;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.95-104
    • /
    • 2013
  • This study set out to devise an optimized system to take into account life cycle cost(LCC) and ton of carbon dioxide($TCO_2$) by applying the weighted coefficient method(WCM) to "public-purpose" facility buildings according to the mandatory 5% and 11% of new renewable energy in total construction costs and anticipated energy consumption, respectively, based on the changes of the public obligation system. (1) System installation capacity is applied within the same new renewable energy facility investment according to the mandatory 5% of new renewable energy in total construction costs. Both LCC and $TCO_2$ recorded in the descending order of geothermal, solar, and photovoltaic energy. The geothermal energy systems tended to exhibit an excellent performance with the increasing installation capacity percentage. (2) Optimal systems include the geothermal energy(100%) system in the category of single systems, the solar energy(12%)+geothermal energy(88%) system in the category of 2-combined systems, and the photovoltaic energy(12%)+solar energy(12%)+geothermal energy(76%) system and the photovoltaic energy(12%)+solar energy(25%)+geothermal energy(63%) system in the category of 3-combined systems. (3) LCC was the highest in the descending order of photovoltaic, geothermal and solar energy due to the influences of each energy source's correction coefficient according to the mandatory 11% of new renewable energy in anticipated energy consumption. The greater installation capacity percentage photovoltaic energy had, the more excellent tendency was observed. $TCO_2$ recorded in the descending order of geothermal, photovoltaic and solar energy with the decreasing installation capacity of photovoltaic energy. The greater installation capacity percentage a geothermal energy system had, the more excellent tendency it demonstrated. (4) Optimal systems include the geothermal energy(100%) system in the category of single systems, the photovoltaic energy(62%)+geothermal energy(38%) system in the category of 2-combined systems, and the photovoltaic energy(50%)+solar energy(12%)+geothermal energy(38%) system and the photovoltaic energy(12%)+solar energy(12%)+geothermal energy(76%) system in the category of 3-combined systems.

Characteristics of heavy metal concentrations in urban stormwater runoff, Daejeon, Korea (도시 유역 강우유출수 내 중금속 농도의 변화 특성에 관한 연구)

  • Yu, Eunjin;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.917-927
    • /
    • 2018
  • Seven heavy metal concentrations (As, Cd, Cr, Cu, Ni, Pb, Zn) were continuously analyzed for twenty rainfall events in 2017~2018 in an urban basin. The overall and dynamic correlations between runoff characteristics and heavy metal concentrations were examined. The peak metal concentration generally appeared in the initial runoff but found to be delayed when the rainfall intensity was low. The rainfall duration had no relationship with either heavy metal concentrations or their total mass. Dynamics of heavy metal mass (load), with the exception of Cu and Zn, showed strong correlation with the 30 minute rainfall intensity (0.60~0.88) and runoff volume (0.74~0.89). While event mean concentration (EMC) showed positive correlation (0.54~0.73) with antecedent dry days (ADD), no significant relationship was found between runoff volume and pollutant concentration. This implies that the pollutants built up on the surface during dry days are washed off even with low rainfall energy. The dynamics of heavy metal and TSS concentrations showed good correlation (0.68~0.87). This result shows that the metals are transported along with solid particles as adsorbate in surface runoff. Regular street sweeping will reduce significant amount of heavy metal loads in urban surface runoff.

Development of Estimation Model of Trip Generation Model and Trip Distribution Model Reflecting Coefficient of Accessibility (접근성 변수를 반영한 통행발생 및 통행분포모형 개발)

  • Jeon, Yong-Hyun;Rho, Jeong-Hyun;Jang, Jun-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.576-584
    • /
    • 2017
  • Traffic demand prediction result is a primary factor for decision making such as the traffic planning and operation. The existing traffic demand prediction 4-step model only covers the trip between the origin and the destination, and not the demand followed by the accessibility improvement, due to the characteristic of this model. Therefore, the purpose of this research is to improve the limitations of the existing model by developing the inter-city trip generation and trip distribution model with more accessibility. After calculating of the trip generation and trip distribution model with more accessibility, the sign of the accessibility coefficient was positive. Commuting was the most insensitive indicator, affected by external factors among the other trip purposes. The leisure trip was the most sensitive, affected by the trip fee. According to the result of comparison with each of estimated model and observational data, it was certain that the reliability and assumption of the model have been improved by discovering the reduced weighted average error rate, Root Mean Square Error (RMSE) and total error through the model with more accessibility compared with the existing one.

Burglary Prevention Effect of Target Hardening through Certified Security Products by WDQ Analysis (WDQ분석을 통한 타겟하드닝 CPTED의 침입범죄 예방효과 검증: 안산시 사례 중심으로)

  • Park, Hyeonho;Kim, Kang-Il;Cho, Joon-Tag
    • Korean Security Journal
    • /
    • no.56
    • /
    • pp.9-30
    • /
    • 2018
  • Crime prevention strategies are introduced to reduce the loss caused by crimes, and Target hardening against domestic burglary attacks is broadly accepted as one of such physical security strategies. In terms of business and home security, target hardening is one of the suite of protective measures that are included in crime prevention through environmental design(CPTED). This can include ensuring all doors and windows are sourced and fitted in such a way that they can resist forcible and surreptitious from the attack of intruder. Target hardening with certified security doors, security windows and secure locks are revealed to be much more effective to deter burglary attacks than other security devices, such as CCTV, lightings and alarms which have largely psychological and indirect impact. A pilot program of target hardening utilizing certified security window and locks was carried out in Ansan city, South Korea in 2016. This study is based on the quasi-experimental design of this program for a residential area. The researchers tried to verify the crime displacement effect of the target hardening program and the diffusion effects of crime prevention benefits by analysing the crime statistics. The evaluation utilized WDQ(Weighted Displacement Quotient) technique to analyze whether the crime displacement occurred, compared the crime statistics of the experimental area with that of buffer zone and controlled areas. The result showed that the target hardening program was significantly effective in crime prevention. The number of burglary in the experimental site with target hardening intervention reduced by 100%, although the areas without the intervention showed reduction in the burglary. The crime displacement was not found at all, and the number of burlary at the buffer zone also reduced significantly.

Analysis of Intercepted Discharge Considering the Change of Street Inlet Size (빗물받이 유입구 크기 변화에 따른 차집유량 분석)

  • Kim, Jung Soo;Ryu, Teak Hee;Rim, Chang Soo;Yoon, Sei Eui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.375-375
    • /
    • 2015
  • 최근 도시화에 따른 도로구역의 증가는 도심지의 불투수면적의 확대 및 도로의 수로화를 야기하여 집중호우 발생 시 노면 및 저지대의 침수를 가중시키고 있으며, 이로 인한 인명피해 및 재산 피해는 점차 증가하는 추세이다. 이에 기후변화에 따른 강우량의 변화 및 국지성 집중호우 등을 고려하고 도심지 침수 방지 및 방재성능 강화를 위하여 과거에 간선 10년, 지선 5년에서 간선 30년, 지선 10년으로 관거의 설계빈도가 상향조정 되었다. 도심지의 도로 및 유역 유출량의 배수에 상당한 영향을 미치는 빗물받이 및 빗물받이 유입구는 도심지의 방재성능강화 목적에 맞는 설계가 이루어져야 하나 현재 국내의 빗물받이 설치기준은 하수도시설기준(2009, 환경부)에서 '빗물받이 크기별, 도로 차선별 적정 빗물받이 설치간격' 으로 설계빈도 5년을 반영하여 제시된 설치기준이므로 이에 대한 수정 및 개정이 필요한 실정이다. 이에 본 연구에서는 관거시설의 설계빈도 상향을 고려한 도로 빗물받이의 유입량 산정을 위해 빗물받이 유입구 크기별 유입량을 도로의 차선, 종경사, 측구 횡경사 및 설계빈도의 변화를 고려하여 도로에서의 유출량을 산정하였으며, Froude 상사법칙을 이용하여 수리실험모형을 제작하여 실험을 실시하였다. 빗물받이 제원은 현재 대부분의 국도에 설치되는 크기인 $40{\times}50cm$, $40{\times}100cm$$40{\times}150cm$를 축소 제작하였다. 측구의 유량은 도로의 차선(2~4차선), 경사(도로 종경사 2~10%, 측구 횡경사 2~10%) 및 설계빈도(최대 30년)을 고려하였다. 실험 결과 측구의 횡경사가 커질수록 빗물받이로 유입되는 유량은 증가하였으며, 빗물받이 유입부의 길이가 증가함에 따라 유입부 측면부를 통한 횡유입량을 증가시켜 빗물받이 유입부의 차집율을 증가시켰다. 또한, 도로의 조건 변화 및 유입량의 변화에 따라서 흐름폭이 감소할수록 차집율이 증가하였다. 수리실험결과를 토대로 도로의 조건변화(차선, 도로 종경사, 측구 횡경사) 및 설계빈도 변화를 고려한 빗물받이의 차집율을 제시하였고 이를 회귀분석 하여 빗물받이 유입구 크기별 유입량 산정식을 도출하였다. 이는 설계빈도 상향에 따른 국내 빗물받이 유입부의 설계 기준 제시에 기초자료로 활용이 가능할 것으로 판단된다.

  • PDF

Changes in metabolic rate and hematological parameters of black rockfish (Sebastes schlegeli) in relation to temperature and hypoxia (수온과 저산소에 따른 조피볼락(Sebastes schlegeli)의 호흡대사와 혈액성상의 변화)

  • Kim, Heung-Yun
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.213-224
    • /
    • 2021
  • Experiments were performed to investigate changes in metabolic rate (MO2), critical oxygen saturation (Scrit) and hematological parameters of black rockfish, Sebastes schlegeli exposed to hypoxia at 15, 20 and 25℃. The MO2 was measured at an interval of 10 min using intermittent-flow respirometry. The normoxic standard metabolic rate (SMR) was 116.5±5.5, 188.6±4.2 and 237.4±6.8 mg O2/kg/hr, and Scrit was 22.1±1.2, 30.6±1.5 and 41.9±1.4% air saturation at 15, 20 and 25℃, respectively. Q10 values were 2.62 between 15 and 20℃, 1.58 between 20 and 25℃, and 2.04 over the full temperature range. In the investigation of blood (hematocrit and hemoglobin) and biochemical parameters (plasma cortisol, glucose, electrolyte and osmolality), the rockfish were subjected to Scrit for each temperature during 4 hr. All of hematological parameters of the rockfish exposed to hypoxic water were significantly higher than those of normoxic control. Moreover, blood and biochemical parameters of the rockfish maintained to normoxic water showed the tendency of increase with temperature, and were significantly higher at 25C. As a result of this experiment, it was found that physiological stress due to hypoxia increased at high temperature.