DOI QR코드

DOI QR Code

Changes in metabolic rate and hematological parameters of black rockfish (Sebastes schlegeli) in relation to temperature and hypoxia

수온과 저산소에 따른 조피볼락(Sebastes schlegeli)의 호흡대사와 혈액성상의 변화

  • Kim, Heung-Yun (Department of Aqualife Medicine, Chonnam National University)
  • 김흥윤 (전남대학교 수산생명의학과)
  • Received : 2021.11.29
  • Accepted : 2021.12.08
  • Published : 2021.12.31

Abstract

Experiments were performed to investigate changes in metabolic rate (MO2), critical oxygen saturation (Scrit) and hematological parameters of black rockfish, Sebastes schlegeli exposed to hypoxia at 15, 20 and 25℃. The MO2 was measured at an interval of 10 min using intermittent-flow respirometry. The normoxic standard metabolic rate (SMR) was 116.5±5.5, 188.6±4.2 and 237.4±6.8 mg O2/kg/hr, and Scrit was 22.1±1.2, 30.6±1.5 and 41.9±1.4% air saturation at 15, 20 and 25℃, respectively. Q10 values were 2.62 between 15 and 20℃, 1.58 between 20 and 25℃, and 2.04 over the full temperature range. In the investigation of blood (hematocrit and hemoglobin) and biochemical parameters (plasma cortisol, glucose, electrolyte and osmolality), the rockfish were subjected to Scrit for each temperature during 4 hr. All of hematological parameters of the rockfish exposed to hypoxic water were significantly higher than those of normoxic control. Moreover, blood and biochemical parameters of the rockfish maintained to normoxic water showed the tendency of increase with temperature, and were significantly higher at 25C. As a result of this experiment, it was found that physiological stress due to hypoxia increased at high temperature.

본 연구는 수온 15, 20 및 25℃에서 조피볼락(Sebastes schlegeli)을 점진적인 저산소 조건에 노출시켜 호흡 대사율이 표준대사율(SMR) 이하로 감소하는 산소포화도, Scrit를 평가하고, 수온별 Scrit 에 4시간 노출 후 혈액 성상의 변화를 조사하기 위하여 실시하였다. 수온 15, 20, 25℃에서 normoxic SMR은 각각 116.5±5.5, 188.6±4.2 및 237.4±6.8 mg O2/kg/hr이었고, 호흡계수(Q10)는 15-20℃ 구간에서는 2.62, 20-25℃에서는 1.58, 그리고 전 수온 범위의 15-25℃에서는 2.04였다. 수온 15, 20 및 25℃에서 Scrit는 각각 22.1±1.2, 30.6±1.5 및 41.9±1.4 %였다. 수온별 Scrit에 4시간 노출 후 혈액 Ht와 Hb 및 혈장 cortisol, glucose, 전해질(Na+, K+, Cl-)과 삼투질 농도는 모든 수온에서 normoxic water의 대조구에 비하여 유의하게 높았다. 수온 15, 20, 25℃의 normoxic water에서는 Ht, Hb 및 혈장 glucose 농도는 15℃에 비하여 20℃와 25℃에서, 혈장 cortisol, 전해질 및 삼투질 농도는 25℃에서 유의하게 높았다. 수온별 Scrit의 저산소에 노출된 조피볼락은 수온이 높을수록 저산소에 의한 어체의 생리적 스트레스는 가중되는 것으로 나타났다.

Keywords

References

  1. Abdel-Tawwab, M., Monier, M.N., Hoseinifar, S.H. and Faggio, C.: Fish response to hypoxia stress: growth, physiological, and immunological biomarkers. Fish Physiol. Biochem., 45: 997-1013, 2019. https://doi.org/10.1007/s10695-019-00614-9
  2. Barton, B.A. and Iwama, G.K.: Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis., 1: 3-26, 1991. https://doi.org/10.1016/0959-8030(91)90019-g
  3. Brett, J.R.: Environmental factors and growth. In Fish physiology, vol. 8. pp. 599-675, https://doi.org/10.1016/S1546-5098(08)60033-3
  4. Hoar, W.S., Randall, D.J. and Brett, J.R., Academic Press, New York, 1979.
  5. Buentello, J.A., Gatlin III, D.M. and Neill, W.H.: Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquaculture, 182: 339-352, 2000. https://doi.org/10.1016/S0044-8486(99)00274-4
  6. Chabot, D., Steffensen, J.F. and A. P. Farrell, A.P.: The determination of standard metabolic rate in fishes. J. Fish Biol., 88: 81-121., 2016. https://doi.org/10.1111/jfb.12845
  7. Choi, H.S., Myoung, J.I., Park. M.A. and Cho, M.Y.: A study on the summer mortality of Korean rockfish Sebastes schlegeli in Korea. J. Fish Pathol., 22: 155-162, 2009.
  8. Do, Y.H., Min, B.H., Kim, Y.D. and Park, M.S.: Changes on hematological factors and oxygen consumption of Korean rockfish Sebastes schlegeli in high water temperature. JFMSE, 28: 738-745, 2016. https://doi.org/10.13000/JFMSE.2016.28.3.738
  9. Ellis, T., Yildiz, H.Y., Lopez-Olmeda, J., Spedicato, M.T., Tort, L., Overli, O. And Martins, C.I.M.: Cortisol and finfish welfare. Fish Physiol. Biochem., 38: 163-188, 2012. https://doi.org/10.1007/s10695-011-9568-y
  10. Fernandes, M.N. and Rantin, F.T.: Respiratory responses of Oreochromis niloticus (Pisces, Cichlidae) to environmental hypoxia under different thermal conditions. J. Fish Biol., 35: 509-519, 1989. https://doi.org/10.1111/j.1095-8649.1989.tb03002.x
  11. Gaulke, G.L., Dennis III, C.E., Wahl, D.H. and Suski, C.D.: Acclimation to a low oxygen environment alters the hematology of largemouth bass (Micropterus salmoides). Fish Physiol. Biochem., 40: 129-140, 2014. https://doi.org/10.1007/s10695-013-9830-6
  12. Han, J.D. and Kim, H.Y.: Changes in respiratory metabolism and blood chemistry of olive flounder Paralichthys olivaceus exposed to hypoxia. Korean J. Fish. Aquat. Sci., 49: 45-52, 2016. https://doi.org/10.5657/KFAS.2016.0045
  13. He, W., Cao, Z.D. and Fu, S.J.: Effect of temperature on hypoxia tolerance and its underlying biochemical mechanism in two juvenile cyprinids exhibiting distinct hypoxia sensitivities. Comp. Biochem. Physiol., 187A: 232-241, 2015.
  14. Herbert, N.A. and Steffensen, J.F.: The response of Atlantic cod, Gadus morhua, to progressive hypoxia: fish swimming speed and physiological stress. Mar. Biol., 147: 1403-1412, 2005. https://doi.org/10.1007/s00227-005-0003-8
  15. Jee, B.Y., Do, Y.H., Min, B.H., Park, M.S., Hwang, H.G., Myeong, J.I. and Cho, J.K.: Changes of blood parameters in Korean rockfish Sebastes schlegeli subjected to acute hypoxia at different water temperatures. Korean J. Environ. Biol., 33: 412-418, 2015. https://doi.org/10.11626/KJEB.2015.33.4.412
  16. Jia, Y., Wang, J., Gao, Y. and Huang, B.: Hypoxia tolerance, hematological, and biochemical response in juvenile turbot (Scophthalmus maximus. L). Aquaculture, 535: 1-8, 2021.
  17. Jobling, M.: Temperature tolerance and the final preferendum-rapid methods for the assessment of optimum growth temperatures. J. Fish Biol., 19: 439-455, 1981. https://doi.org/10.1111/j.1095-8649.1981.tb05847.x
  18. Jobling, M.: A study of some factors affecting rates of oxygen consumption of plaice, Pleuronectes platessa L. J. Fish Biol., 20: 501-516, 1982. https://doi.org/10.1111/j.1095-8649.1982.tb03951.x
  19. Jung, J.H., Kim, H.N., Chae, Y.S. and Shim, W.J.: Biochemical responses of juvenile rockfish (Sebastes schlegeli) to low levels of dissolved oxygen in Gamak Bay. Ocean. Sci. J., 49: 241-247, 2014. https://doi.org/10.1007/s12601-014-0024-7
  20. Kim, W.S., Yoon, S.J. and Gil, J.W.: Critical thermal maximum (CTM) of cultured black rockfish, Sebastes schlegeli. J. Fish. Sci. Tech., 6: 59-65, 2003.
  21. Kir, M. and Demirci, O.: Thermal tolerance and standard metabolic rate of juvenile European sea bass (Dicentrarchus labrax, Linnaeus, 1758) acclimated to four temperatures. J. Therm. Biol., 78: 209-213, 2018. https://doi.org/10.1016/j.jtherbio.2018.10.008
  22. Kir, M., Sunar, M.C. and Altindag, B.C.: Thermal tolerance and preferred temperature range of juvenile meagre acclimated to four temperatures. J. Therm. Biol., 65: 125-129, 2017. https://doi.org/10.1016/j.jtherbio.2017.02.018
  23. Kita, J., Tsuchida, S. and Setoguma, T.: Temperature preference and tolerance, and oxygen consumption of the marbled rockfish, Sebastiscus marmoratus. Mar. Biol., 125: 467-471, 1996. https://doi.org/10.1007/bf00353259
  24. Lee, Y.S. and Lee, S.Y.: Factors affecting outbreaks of Cochlodinium polykrikoides blooms in coastal areas of Korea. Mar. Pollut. Bull., 52: 626-634, 2006. https://doi.org/10.1016/j.marpolbul.2005.10.015
  25. Lee, D.C., Park, Y.C., Jeon, C.Y., Yang, J.Y., Hur, Y.B., Kim, J.W. and Cho, K.C.: A report on the 2012 mass summer mortalities of black rockfish, Sebastes schlegeli in the Southeast Sea, Korea. J. Fish Pathol., 26: 173-183, 2013. https://doi.org/10.7847/JFP.2013.26.3.173
  26. Maxime, V., Pichavant, K., Boeuf, G. and Nonnotte, G.: Effect of hypoxia on respiratory physiology of turbot, Scophthalmus maximus. Fish Physiol. Biochem., 22: 51-59, 2000. https://doi.org/10.1023/A:1007829214826
  27. McBryan, T.L., Anttila, K., Healy, T.M. and Schulte, P.M.: Responses to temperature and hypoxia as interacting stressors in fish: Implications for adaptation to environmental change. Integr. Comp. Biol., 53: 648-659, 2013. https://doi.org/10.1093/icb/ict066
  28. Oh, S.Y., Noh, C.H., Myoung, J.G. and Jo, J.Y.: Effects of water temperature and body weight on oxygen consumption rate of black rockfish, Sebastes schlegeli. Korean J. Ichthyol., 19: 1-7, 2007.
  29. Ott, M.E., Heisler, N. and Ultsch, G.R.: A re-evaluation of the relationship between temperature and the critical oxygen tension in freshwater fishes. Comp. Biochem. Physiol., 67A: 337-340, 1980.
  30. Pan, Y.K., Ern, R. and Esbaugh, A.J.: Hypoxia tolerance decreases with body size in red drum Sciaenops ocellatus. J. Fish Biol., 89: 1488-1493, 2016. https://doi.org/10.1111/jfb.13035
  31. Pichavant, K., Person-Le-Ruyet, J., Le Bayon, N., Severe, A., Le Roux, A. and Boeuf, G.: Comparative effects of long-term hypoxia on growth, feeding and oxygen consumption in juvenile turbot and European sea bass. J. Fish Biol., 59: 875-883, 2001. https://doi.org/10.1006/jfbi.2001.1702
  32. Rabalais, N.N., Diaz, R.J., Levin, L.A., Turner, R.E., Gilbert, D. and Zhang J.: Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 7: 585-619, 2010. https://doi.org/10.5194/bg-7-585-2010
  33. Randall, D.: The control of respiration and circulation in fish during exercise and hypoxia. J. Exp. Biol., 100: 275-288, 1982. https://doi.org/10.1242/jeb.100.1.275
  34. Richards, J.G.: Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J. Exp. Biol., 214: 191-199, 2011. https://doi.org/10.1242/jeb.047951
  35. Schurmann, H. and Steffensen, J.F.: Lethal oxygen levels at different temperatures and the preferred temperature during hypoxia of the Atlantic cod, Gadus morhua L. J. Fish Biol., 41: 927-934, 1992. https://doi.org/10.1111/j.1095-8649.1992.tb02720.x
  36. Schurmann, H. and Steffensen, J.F.: Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. J. Fish Biol., 50: 1166-1180, 1997. https://doi.org/10.1006/jfbi.1997.0387
  37. Seo, K.S. and Lee, C.K.: Cochlodinium red tide effects on the respiration of abalone, Haliotis discus hannai Ino. Algae, 22: 241-246, 2007. https://doi.org/10.4490/ALGAE.2007.22.3.241
  38. Silkin, Y.A. and Silkina, E.N.: Effect of hypoxia on physiological-biochemical blood parameters in some marine fish. J. Evol. Biochem. Physiol., 41: 527-532, 2005. https://doi.org/10.1007/s10893-005-0092-5
  39. Soivio, A., Nikinmaa, M. and Westman, K.: The blood oxygen binding properties of hypoxia. J. Comp. Physiol., 136B, 83-87, 1980.
  40. Soldatov, A.A.: The effect of hypoxia on red blood cells of flounder: a morphologic and autoradiographic study. J. Fish Biol., 48: 321-328, 1996. https://doi.org/10.1006/jfbi.1996.0035
  41. Steffensen, J.F.: Some errors in respirometry of aquatic breathers: how to avoid and correct for them. Fish Physiol. Biochem., 6: 49-59, 1989. https://doi.org/10.1007/BF02995809
  42. Steffensen, J.F.: Oxygen consumption of fish exposed to hypoxia: Are they all oxyregulators or are any oxyconformers? In Proceedings of the Ninth International Symposium on Fish Physiology, Toxicology and Water Quality, pp. 239-250, Brouner, C.J., Suvajdzic, K., Nilsson, G. and Randall, D., Ecosystems Research Division, Georgia, 239-250, 2006.
  43. Steffensen, J.F., Lomholt, P.J. and Johansen, K.: Gill ventilation and O2 extraction during graded hypoxia in two ecologically distinct species of flatfish, the flounder (Plutichthys flesus) and the plaice (Pleuronectes platessa). Env. Biol. Fish., 7: 157-164, 1982. https://doi.org/10.1007/BF00001786
  44. Thuy, N.H., Tien, L.A., Tuyet, P.N., Huong, D.T.T., Cong, N.V., Bayley, M., Wang, T. and Lefevre, S.: Critical oxygen tension increases during digestion in the perch Perca fluviatilis. J. Fish Biol. 76: 1025-1031, 2010. https://doi.org/10.1111/j.1095-8649.2009.02533.x
  45. Tsuchida, S.: The relationship between upper temperature tolerance and final preferendum of Japanese marine fish. J. Therm. Biol., 20: 35-41, 1995. https://doi.org/10.1016/0306-4565(94)00024-D
  46. Tsuchida, S.: Experimental study on temperature preference of Japanese marine fish. Rep. Mar. Ecol. Res. Inst., 4: 11-66, 2002.
  47. Ultsch, G.R., Boschung, H. and Ross, M.J.: Metabolism, critical oxygen tension, and habitat selection in darters (Etheostoma). Ecology, 59: 99-107, 1978. https://doi.org/10.2307/1936635
  48. White, A. and Fletcher, T.C.: The effect of physical disturbance, hypoxia and stress hormones on serum components of the plaice, Pleuronectes platessa L. Comp. Biochem. Physiol., 93A, 455-461, 1989. https://doi.org/10.1016/0300-9629(89)90066-2
  49. Yang, Y., Wang, Z., Wang, J., Lyu, F., Xu, K. and Mu, W.: Histopathological, hematological, and biochemical changes in high-latitude fish Phoxinus lagowskii exposed to hypoxia. Fish Physiol. Biochem., 47: 919-938, 2021. https://doi.org/10.1007/s10695-021-00947-4