Browse > Article
http://dx.doi.org/10.7847/jfp.2021.34.2.213

Changes in metabolic rate and hematological parameters of black rockfish (Sebastes schlegeli) in relation to temperature and hypoxia  

Kim, Heung-Yun (Department of Aqualife Medicine, Chonnam National University)
Publication Information
Journal of fish pathology / v.34, no.2, 2021 , pp. 213-224 More about this Journal
Abstract
Experiments were performed to investigate changes in metabolic rate (MO2), critical oxygen saturation (Scrit) and hematological parameters of black rockfish, Sebastes schlegeli exposed to hypoxia at 15, 20 and 25℃. The MO2 was measured at an interval of 10 min using intermittent-flow respirometry. The normoxic standard metabolic rate (SMR) was 116.5±5.5, 188.6±4.2 and 237.4±6.8 mg O2/kg/hr, and Scrit was 22.1±1.2, 30.6±1.5 and 41.9±1.4% air saturation at 15, 20 and 25℃, respectively. Q10 values were 2.62 between 15 and 20℃, 1.58 between 20 and 25℃, and 2.04 over the full temperature range. In the investigation of blood (hematocrit and hemoglobin) and biochemical parameters (plasma cortisol, glucose, electrolyte and osmolality), the rockfish were subjected to Scrit for each temperature during 4 hr. All of hematological parameters of the rockfish exposed to hypoxic water were significantly higher than those of normoxic control. Moreover, blood and biochemical parameters of the rockfish maintained to normoxic water showed the tendency of increase with temperature, and were significantly higher at 25C. As a result of this experiment, it was found that physiological stress due to hypoxia increased at high temperature.
Keywords
Black rockfish; Hypoxia; Oxygen consumption; Critical oxygen saturation; Hematological parameter;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Yang, Y., Wang, Z., Wang, J., Lyu, F., Xu, K. and Mu, W.: Histopathological, hematological, and biochemical changes in high-latitude fish Phoxinus lagowskii exposed to hypoxia. Fish Physiol. Biochem., 47: 919-938, 2021.   DOI
2 Pichavant, K., Person-Le-Ruyet, J., Le Bayon, N., Severe, A., Le Roux, A. and Boeuf, G.: Comparative effects of long-term hypoxia on growth, feeding and oxygen consumption in juvenile turbot and European sea bass. J. Fish Biol., 59: 875-883, 2001.   DOI
3 Soldatov, A.A.: The effect of hypoxia on red blood cells of flounder: a morphologic and autoradiographic study. J. Fish Biol., 48: 321-328, 1996.   DOI
4 Randall, D.: The control of respiration and circulation in fish during exercise and hypoxia. J. Exp. Biol., 100: 275-288, 1982.   DOI
5 Lee, D.C., Park, Y.C., Jeon, C.Y., Yang, J.Y., Hur, Y.B., Kim, J.W. and Cho, K.C.: A report on the 2012 mass summer mortalities of black rockfish, Sebastes schlegeli in the Southeast Sea, Korea. J. Fish Pathol., 26: 173-183, 2013.   DOI
6 McBryan, T.L., Anttila, K., Healy, T.M. and Schulte, P.M.: Responses to temperature and hypoxia as interacting stressors in fish: Implications for adaptation to environmental change. Integr. Comp. Biol., 53: 648-659, 2013.   DOI
7 Oh, S.Y., Noh, C.H., Myoung, J.G. and Jo, J.Y.: Effects of water temperature and body weight on oxygen consumption rate of black rockfish, Sebastes schlegeli. Korean J. Ichthyol., 19: 1-7, 2007.
8 Richards, J.G.: Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J. Exp. Biol., 214: 191-199, 2011.   DOI
9 Schurmann, H. and Steffensen, J.F.: Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. J. Fish Biol., 50: 1166-1180, 1997.   DOI
10 Seo, K.S. and Lee, C.K.: Cochlodinium red tide effects on the respiration of abalone, Haliotis discus hannai Ino. Algae, 22: 241-246, 2007.   DOI
11 Soivio, A., Nikinmaa, M. and Westman, K.: The blood oxygen binding properties of hypoxia. J. Comp. Physiol., 136B, 83-87, 1980.
12 Steffensen, J.F.: Oxygen consumption of fish exposed to hypoxia: Are they all oxyregulators or are any oxyconformers? In Proceedings of the Ninth International Symposium on Fish Physiology, Toxicology and Water Quality, pp. 239-250, Brouner, C.J., Suvajdzic, K., Nilsson, G. and Randall, D., Ecosystems Research Division, Georgia, 239-250, 2006.
13 Silkin, Y.A. and Silkina, E.N.: Effect of hypoxia on physiological-biochemical blood parameters in some marine fish. J. Evol. Biochem. Physiol., 41: 527-532, 2005.   DOI
14 Pan, Y.K., Ern, R. and Esbaugh, A.J.: Hypoxia tolerance decreases with body size in red drum Sciaenops ocellatus. J. Fish Biol., 89: 1488-1493, 2016.   DOI
15 Rabalais, N.N., Diaz, R.J., Levin, L.A., Turner, R.E., Gilbert, D. and Zhang J.: Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 7: 585-619, 2010.   DOI
16 Schurmann, H. and Steffensen, J.F.: Lethal oxygen levels at different temperatures and the preferred temperature during hypoxia of the Atlantic cod, Gadus morhua L. J. Fish Biol., 41: 927-934, 1992.   DOI
17 Steffensen, J.F.: Some errors in respirometry of aquatic breathers: how to avoid and correct for them. Fish Physiol. Biochem., 6: 49-59, 1989.   DOI
18 Thuy, N.H., Tien, L.A., Tuyet, P.N., Huong, D.T.T., Cong, N.V., Bayley, M., Wang, T. and Lefevre, S.: Critical oxygen tension increases during digestion in the perch Perca fluviatilis. J. Fish Biol. 76: 1025-1031, 2010.   DOI
19 Ultsch, G.R., Boschung, H. and Ross, M.J.: Metabolism, critical oxygen tension, and habitat selection in darters (Etheostoma). Ecology, 59: 99-107, 1978.   DOI
20 Abdel-Tawwab, M., Monier, M.N., Hoseinifar, S.H. and Faggio, C.: Fish response to hypoxia stress: growth, physiological, and immunological biomarkers. Fish Physiol. Biochem., 45: 997-1013, 2019.   DOI
21 Barton, B.A. and Iwama, G.K.: Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis., 1: 3-26, 1991.   DOI
22 Brett, J.R.: Environmental factors and growth. In Fish physiology, vol. 8. pp. 599-675,   DOI
23 Hoar, W.S., Randall, D.J. and Brett, J.R., Academic Press, New York, 1979.
24 Kir, M. and Demirci, O.: Thermal tolerance and standard metabolic rate of juvenile European sea bass (Dicentrarchus labrax, Linnaeus, 1758) acclimated to four temperatures. J. Therm. Biol., 78: 209-213, 2018.   DOI
25 Gaulke, G.L., Dennis III, C.E., Wahl, D.H. and Suski, C.D.: Acclimation to a low oxygen environment alters the hematology of largemouth bass (Micropterus salmoides). Fish Physiol. Biochem., 40: 129-140, 2014.   DOI
26 Han, J.D. and Kim, H.Y.: Changes in respiratory metabolism and blood chemistry of olive flounder Paralichthys olivaceus exposed to hypoxia. Korean J. Fish. Aquat. Sci., 49: 45-52, 2016.   DOI
27 Herbert, N.A. and Steffensen, J.F.: The response of Atlantic cod, Gadus morhua, to progressive hypoxia: fish swimming speed and physiological stress. Mar. Biol., 147: 1403-1412, 2005.   DOI
28 Kita, J., Tsuchida, S. and Setoguma, T.: Temperature preference and tolerance, and oxygen consumption of the marbled rockfish, Sebastiscus marmoratus. Mar. Biol., 125: 467-471, 1996.   DOI
29 Jia, Y., Wang, J., Gao, Y. and Huang, B.: Hypoxia tolerance, hematological, and biochemical response in juvenile turbot (Scophthalmus maximus. L). Aquaculture, 535: 1-8, 2021.
30 Jobling, M.: A study of some factors affecting rates of oxygen consumption of plaice, Pleuronectes platessa L. J. Fish Biol., 20: 501-516, 1982.   DOI
31 Kir, M., Sunar, M.C. and Altindag, B.C.: Thermal tolerance and preferred temperature range of juvenile meagre acclimated to four temperatures. J. Therm. Biol., 65: 125-129, 2017.   DOI
32 Lee, Y.S. and Lee, S.Y.: Factors affecting outbreaks of Cochlodinium polykrikoides blooms in coastal areas of Korea. Mar. Pollut. Bull., 52: 626-634, 2006.   DOI
33 Buentello, J.A., Gatlin III, D.M. and Neill, W.H.: Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquaculture, 182: 339-352, 2000.   DOI
34 Chabot, D., Steffensen, J.F. and A. P. Farrell, A.P.: The determination of standard metabolic rate in fishes. J. Fish Biol., 88: 81-121., 2016.   DOI
35 Jee, B.Y., Do, Y.H., Min, B.H., Park, M.S., Hwang, H.G., Myeong, J.I. and Cho, J.K.: Changes of blood parameters in Korean rockfish Sebastes schlegeli subjected to acute hypoxia at different water temperatures. Korean J. Environ. Biol., 33: 412-418, 2015.   DOI
36 Choi, H.S., Myoung, J.I., Park. M.A. and Cho, M.Y.: A study on the summer mortality of Korean rockfish Sebastes schlegeli in Korea. J. Fish Pathol., 22: 155-162, 2009.
37 Do, Y.H., Min, B.H., Kim, Y.D. and Park, M.S.: Changes on hematological factors and oxygen consumption of Korean rockfish Sebastes schlegeli in high water temperature. JFMSE, 28: 738-745, 2016.   DOI
38 Ellis, T., Yildiz, H.Y., Lopez-Olmeda, J., Spedicato, M.T., Tort, L., Overli, O. And Martins, C.I.M.: Cortisol and finfish welfare. Fish Physiol. Biochem., 38: 163-188, 2012.   DOI
39 Jobling, M.: Temperature tolerance and the final preferendum-rapid methods for the assessment of optimum growth temperatures. J. Fish Biol., 19: 439-455, 1981.   DOI
40 Kim, W.S., Yoon, S.J. and Gil, J.W.: Critical thermal maximum (CTM) of cultured black rockfish, Sebastes schlegeli. J. Fish. Sci. Tech., 6: 59-65, 2003.
41 Maxime, V., Pichavant, K., Boeuf, G. and Nonnotte, G.: Effect of hypoxia on respiratory physiology of turbot, Scophthalmus maximus. Fish Physiol. Biochem., 22: 51-59, 2000.   DOI
42 Ott, M.E., Heisler, N. and Ultsch, G.R.: A re-evaluation of the relationship between temperature and the critical oxygen tension in freshwater fishes. Comp. Biochem. Physiol., 67A: 337-340, 1980.
43 Jung, J.H., Kim, H.N., Chae, Y.S. and Shim, W.J.: Biochemical responses of juvenile rockfish (Sebastes schlegeli) to low levels of dissolved oxygen in Gamak Bay. Ocean. Sci. J., 49: 241-247, 2014.   DOI
44 He, W., Cao, Z.D. and Fu, S.J.: Effect of temperature on hypoxia tolerance and its underlying biochemical mechanism in two juvenile cyprinids exhibiting distinct hypoxia sensitivities. Comp. Biochem. Physiol., 187A: 232-241, 2015.
45 Fernandes, M.N. and Rantin, F.T.: Respiratory responses of Oreochromis niloticus (Pisces, Cichlidae) to environmental hypoxia under different thermal conditions. J. Fish Biol., 35: 509-519, 1989.   DOI
46 Steffensen, J.F., Lomholt, P.J. and Johansen, K.: Gill ventilation and O2 extraction during graded hypoxia in two ecologically distinct species of flatfish, the flounder (Plutichthys flesus) and the plaice (Pleuronectes platessa). Env. Biol. Fish., 7: 157-164, 1982.   DOI
47 Tsuchida, S.: The relationship between upper temperature tolerance and final preferendum of Japanese marine fish. J. Therm. Biol., 20: 35-41, 1995.   DOI
48 Tsuchida, S.: Experimental study on temperature preference of Japanese marine fish. Rep. Mar. Ecol. Res. Inst., 4: 11-66, 2002.
49 White, A. and Fletcher, T.C.: The effect of physical disturbance, hypoxia and stress hormones on serum components of the plaice, Pleuronectes platessa L. Comp. Biochem. Physiol., 93A, 455-461, 1989.   DOI