• Title/Summary/Keyword: 가스유해성

Search Result 77, Processing Time 0.026 seconds

Working Environment and Risk Assessment of Biphenyl in Workplace (Biphenyl 취급사업장의 작업환경 및 유해성 평가)

  • Kim, Hyeon-Yeong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.55-61
    • /
    • 2014
  • In this study, we evaluated the measurement of working environment, the amount of exposure, the hazards and risks of biphenyl, that was registered as 2A in IARC. Based on the exposure scenario, it was calculated that the exposure amounts are $1.0{\times}10^{-2}$, $4.2{\times}10^{-4}$, $7.0{\times}10^{-6}mg/m^3$, respectively, and the $RfC_{work}$ is 0.21, 2.13, 0.53 $0.31mg/m^3$ as carcinogenicity, target toxicity (oral), target toxicity (inhalation), developmental toxicity, respectively. According to these hazards evaluation and risk assessments, it was estimated that 0.57, 0.39 as carcinogenicity and non-carcinogenicity (developmental toxicity), respectively. It was also estimated relatively lower risks below 1. But since biphenyl is hazardous used much amounts, and could be exposed to workers directly, it was determined to require exposure monitoring to protect workers' health.

국산 내장재의 가스 유해성

  • Jang, Gi-Chang
    • Korean Architects
    • /
    • no.9 s.174
    • /
    • pp.94-97
    • /
    • 1983
  • 본보고서는 82년도 연구결과에 대하여 동년 12월에 본 연구소 연구발표회시에 발표한 내용을 정리 · 소개하는 것으로서 연구 및 시험결과에 따라 시험방법을 제정하여 시행중에 있음.

  • PDF

A Study on DNA Degeneration by Comet Assay & Pathological Observation for Mouse Which were Exposed HCN Gases from Fire (화재로 인한 HCN 가스에 노출된 마우스의 병리학적 관찰 및 단세포 전기영동법을 사용한 DNA 변성 추적에 관한 연구)

  • Cho, Nam-Wook;Oh, Eun-Ha;Hwang, Sung-Kwy
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.7-16
    • /
    • 2012
  • Combustion Toxic Effects among several factors of risk encountered during fire are important in the evacuation and final survival, and they are broader and fatal than the direct damages caused by flame. Most studies on fire toxicity until the present are limited to fatality, mainly deaths by fire through pathological research. In this study, it is conducted as a fundamental experiment to address 3 principles of animal experiment and to provide an alternative test to animal testing that is regulated by national building codes and it was conducted through approval by the animal testing ethics committee. Hence, in this study average time of activity stop was measured after directly inhaling toxic gases (HCN) to laboratory animals (mice) through gas toxicity test (KS F 2271) for major asphyxiating gases(HCN) which are produced during fire combustion. effects of Combustion toxic gases on body were quantitatively analyzed through changes in internal organs and hematological analysis, and electrophoresis of a single cell of these laboratory animals. Biological conclusion of combustion toxicology is drawn through approaches (pathological examination, blood test, blood biochemical test, electrophoresis analysis of single cell) which could not confirmed in existing gas toxicity test.

A Research of Grain Size Analysis of Particulate Matter in Fire Effluent (연소 생성물 내 입자상 물질의 입도에 관한 연구)

  • Kim, Sung-Soo;Choi, Seo-Yeon;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.8-12
    • /
    • 2014
  • Interior finishing materials using noncombustible were regulated by the building codes to prevent the spread of fire and protect occupants. The average deed of stopping time of experimental mouse exposing combustion gas were measured by KS F 2271 gas toxicity test. At that time, The average deed of stopping time under 9 minutes were judged a inconsistence. This experiment method has limit to find out a cause of toxicity effect factor. In this study, particle size analysis were performed for investigate a major factor.

The study to measure of the BTX concentration using ANN (인공신경망을 이용한 BTX 농도 측정에 관한 연구)

  • 정영창;김동진;홍철호;이장훈;권혁구
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Air qualify monitoring if a primary activity for industrial and social environment. Especially, the VOCs(Volatile Organic Compounds) are very harmful for human and environment. Throughout this research. we designed sensor array with various kinds of gas sensor, and the recognition algorithm with ANN(Artificial Neural Network : BP), respectively. We have designed system to recognize various kinds and quantities of VOCs, such as benzene, tolylene, and xylene.

  • PDF

Evaluation of the Burning Properties of Various Carpet Samples by using the Cone Calorimeter and Gas Toxicity Test (콘칼로리미터와 가스유해성 시험법을 이용한 카페트류의 연소특성 평가)

  • Lee, Bong-Woo;Kwon, Seong-Pil;Lee, Jang-Won;Lee, Byoung-Ho;Kim, Hee-Soo;Kim, Hyun-Joong
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • In this study, the burning behaviours of five different kinds of carpet samples covered with nylon, PP (polypropylene), PTT (poly(trimethylene terephthalate)), wool fabric and NW (nylon and wool) were evaluated by using the cone calorimeter having a radiant flux of 50kW/$m^2$. And the combustion gas toxicity was evaluated according to KS F 2271 test method. As a result of the cone calorimeter test (KS F ISO 5660-1), nylon carpet samples were ignited most easily. In ignition ability or initial flammability, NW carpet samples showed the highest value. In heat release rate (HRR), fire intensity, PP carpet samples were larger than any other samples. Nylon carpet samples were the highest smoke production rate, while N/W carpet samples the lowest. The following were in mass loss rates: NW > wool > nylon > PP > PTT. CO (carbon monoxide) was one of the most toxic gases released from the combustion. PTT carpet samples gave rise to the highest CO concentration, while NW carpet samples the lowest. In addition, PP carpet samples caused the highest $CO_2$ (carbon dioxide) concentration, while NW carpet samples the lowest. Toxicity of the gas produced from carpet samples was determined by the mouse stop motion, and it resulted in the fact that the combustion gas of PTT carpet samples was more toxic than that of any other samples.

A Study for Pathological Observations on the HBr Combustion Toxity (병리학적 관찰을 통한 HBr의 연소 독성에 관한 연구)

  • Jo, Nam-Wook;Lee, In-Ku;Choi, Jae-Bum;Lee, Bong-Jae;Shin, Hyun-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.373-376
    • /
    • 2012
  • 건축 재료가 다변화됨에 따라 화재 시 발생되는 연소가스 또한 다양해지고 있다. 그중 HBr은 NES 713과 BS 6853에서 연소 가스의 독성 평가를 위해 측정되는 독성가스이다. 특히 산업안전물질보건자료(MSDS)에서는 HBr가스를 흡입할 경우 화상을 일으키며 호흡부전, 두통 등을 유발시킬 수 있고 50ppm의 HBr가스에 노출된 사람은 생명과 건강에 즉시 영향을 받을 수 있는 매우 유독한 연소가스이다. 본 논문에서는 HBr 표준가스를 사용하여 건축법에서 규정한 가스유해성 시험결과와 HBr가스에 노출된 mouse의 병리학적 관찰 결과를 비교 분석하여 HBr의 연소 독성에 관하여 연구를 진행하였다.

  • PDF

The Experimental Study for the Smoke Optical Density and Toxic Gases of Sandwich Panel Insulations(Single Chamber Method) (샌드위치패널 단열재의 연기농도 및 연소독성가스에 대한 실험적 연구(연소챔버법))

  • Park, Soo-Young;Lee, Woo-Seok;Yeo, Han-Seung;Im, Hong-Soon
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.26-32
    • /
    • 2006
  • Nowadays in Korea, KS F 2271 has been using for the test of fire safety performance of sandwich panels. Smoke toxicity test is the test for the toxicity evaluation of smoke and hazardous gas, caused by combustion of building materials and finishing materials. Smoke toxicity can be evaluated by the mean incapacitation time of mice; however this method is not a quantitative way. This test result can be influenced by the health status of mice and test condition. Specific optical density can be quantitatively measured by ISO 5659-2 single chamber method and toxic gases can be quantitatively measured by FTIR analysis. In this study, specific optical density of sandwich panel insulations, which are widely used in Korea, were tested using the ISO 5659-2 single chamber test method and compared with each test. Also, in the second test of three tests for each specimen, FTIR analysis was performed and quantitative test results(HCl, $NO_2$, etc) were compared with each test result.