• Title/Summary/Keyword: 가수

Search Result 2,878, Processing Time 0.03 seconds

Development of Mathematical Model for the Hydrolysis Fish Oil (물고기 기름의 가수분해에 대한 수학적 모형개발)

  • Kim Won-Ho;Lee Yong-Hoon;Park Ji-Suk;Hur Byung-Ki
    • KSBB Journal
    • /
    • v.20 no.2 s.91
    • /
    • pp.106-111
    • /
    • 2005
  • The functional relationship between the number of mole of an i-fatty acid (Si) included in fish oil and the hydrolysis time(t) was expressed as a mathematical model, $S_i=-{\alpha_i}1n(t)+\beta_i$. The average errors of calculated values on the basis of the measured values were distributed in the range of less than $5\%$ for all the 15 fatty aids composing of fish oil. The equation of hydrolysis rate of each fatty acid was deduced as $v_i={\gamma_i}exp(\frac{S_i}{\alpha_i})$ from the above-mentioned $S_i=-{\alpha_i}ln(t)+{\beta_i}$. Therefore the hydrolysis yields of fatty acids were analyzed using the equation of $S_i\;Vs.\;t.$. The 15 fatty acids were categorized into 4groups from the view point of hydrolysis yield. The hydrolysis yields of the first group, including C14:0, C16:0, C16:1, C18:0, C18:1 (n-7) and 1l8:1 (n-9), were higher than $70\%$ at 48 hr of hydrolysis. Those of the second group, C20:1, C22:1, C18:3, C20:4 and C20:5, were distributed from $40\%,\;to\;60\%$, and third group were around $30\%$. The final group containing only C22:6 was very hard to be hydrolyzed and the yield was less than $20\%$ at the same time.

Characteristic Changes in Red Ginseng Fusion Cheonggukjang Based on Hydrolysis Conditions (홍삼 융합청국장의 가수분해 조건에 따른 특성변화)

  • Lee, Myung-Hee;Gu, Young-Ah;Choi, Myung-Sook;Kwon, Joong-Ho;Kim, In-Sun;Jeong, Yong-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.8
    • /
    • pp.1031-1037
    • /
    • 2007
  • Changes in red ginseng fusion cheonggukjang properties under various hydrolytic conditions were investigated for its possible application to different types of food products. Among the four types of protease that were analyzed, protease (KMF -G) produced the highest hydrolysis rate, calcium binding capacity, and total phenolic compound content. In addition, the highest fibrinolytic activity and ACE inhibitory activity were also exhibited at 87.10 units and 67.17%, respectively. Among a number of different protease concentrations, a 0.02% concentration of protease (KMF-G) was found to be appropriate for the purposes of the study. The best results for red ginseng cheonggukjang hydrolysis were observed at the 60 and 90 min intervals. However, there was not a significant difference between the results at the two time points. The unpleasant odor and bitter taste associated with red ginseng fusion cheonggukjang improved with hydrolytic activity exceeding 60 min. Thus, the optimal hydrolysis time was determined to be 60 min. The total ginsenoside content of red ginseng cheonggukjang was 9.197 mg/g and the hydrolysate content was 11.707 mg/g. Based on the results, it was determined that the addition of 0.02% protease (KMF -G) and treatment for 60 min are the optimal hydrolytic conditions for red ginseng cheonggukjang to improve its biochemical characteristics, including fibronolytic activity and ACE inhibitory activity.

Optimization for Maillard Reaction Substrate Conditions of Ribose and Hydrolyzed Wheat Gluten Solution Using Response Surface Methodology (반응표면분석법을 이용한 Ribose와 소맥 글루텐 산 가수분해물의 마이얄 반응기질 조건 최적화)

  • Moon, Ji-Hye;Choi, Hee-Don;Choi, In-Wook;Kim, Yoon-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.3
    • /
    • pp.458-465
    • /
    • 2011
  • Response surface methodology (RSM) was applied to optimize substrate conditions of ribose and hydrolyzed wheat gluten solution for Maillard reaction. Independent variables were NaCl concentration of hydrolyzed wheat gluten ($X_1$), concentration of ribose ($X_2$) and concentration of hydrolyzed wheat gluten ($X_3$), while the dependent variables of the central composite design (CCD) were browning index (absorbance 420 nm), DPPH radical scavenging activity (DF) and sensory preference (score). Optimum substrate conditions at $140^{\circ}C$, 30 min reaction were 3% NaCl concentration of hydrolyzed wheat gluten, 6.2% concentration of ribose and 13.27% concentration of hydrolyzed wheat gluten. The coefficients of determination ($R^2$) were 0.975, 0.960 and 0.854, the model fit was very significant (p<0.001). DPPH radical scavenging activities and sensory preferences were predicted as 700 (DF) and 8.42 (score), respectively. The model solution increased more browning and DPPH radical scavenging activities with increasing ribose and hydrolyzed wheat gluten concentration. Especially hydrolyzed wheat gluten concentration was the most influential factor, while NaCl concentration of hydrolyzed wheat gluten hardly affected the responses. Sensory preference was increased with rising wheat gluten concentration and decreasing NaCl concentration of hydrolyzed wheat gluten.

The Development of a Natural Seasoning Using the Enzymatic Hydrolysate of Fish Skin (어피의 효소적 가수분해물을 이용한 천연조미료의 개발)

  • 김세권;양현필이응호
    • KSBB Journal
    • /
    • v.6 no.4
    • /
    • pp.327-336
    • /
    • 1991
  • A study on the optimum hydrolysis conditions of fish skin through the aid of enzymes and the development of a natural seasoning using the hydrolysate has been carried out for the effective utilization of fish skin. Using the "pH-drop" techniques the collagenase and pronase were identified as most suitable for this purpose. The $K_m$ and $V_{max}$ values of pronase were 1.82 mgN/ml and 0.06 mgN/mL/min, respectively. The hydrolysis conditions of the cod skin for the pronase were as follows: reaction temperature, $50^{\circ}C$; reaction time, 3hrs; pH 6; enzyme concentration, 0.03%. The degree of hydrolysis at these conditions was 76.8%. But after hydrolyzing cod skin with collagenase for 1hr, when the pronase was treated, the degree of hydrolysis was 83.13%. The molecular weight of the hydrolysate was 8,000 daltons. Among the amino acids in the hydrolysate, glycine(27.95%), glutamic acid(10.94%), proline(7.39%), aspartic acid(9.47%) and serine(7.39%) were responsible for 64.23% of the total amino acids. But valine, methionine, isoleucine, leucine, phenylalanine and histidine having a bitter taste were only 13.05%. From the results of the sensory evaluation, the imitation sauce which was made of 20% fermented soy sauce prepared from the hydrolysate was at least similar to the traditional soybean sauce in product quality. The complex seasoning containing 31.7% of the hydrolysate was nearly equal to complex seasonings on the market, too.

  • PDF

Application and Antimicrobial Activities of Casein Hydrolysates Treated with Asp.oryzae Protease (Casein 효소 가수분해물의 항균 활성과 그 응용)

  • Lee Hye-Jin;Yi Sang-Duk;Oh Man-Jin
    • Food Science and Preservation
    • /
    • v.13 no.1
    • /
    • pp.88-94
    • /
    • 2006
  • This study was carried out to produce antimicrobial peptides from casein using various proteases. To examine whether the hydrolysis of casein would produce antimicrobial substance and the application as natural antimicrobial material, casein was hydrolyzed by five different proteases. The casein hydrolysate was fractionated with regenerated membrane filter (molecular weight cut-off 30,000 10,000 and 3,000) and antimicrobial activity was measured for each fraction. Antimicrobial activity appeared great in the fraction below 3,000 molecular weight The fraction was re-fractionated by high performance liquid chromatography and substance of main peak (retention time: 13.2 min) collected was used as a sample to measure antimicrobial activity. Among the casein hydrolysates produced by protease, antimicrobial activity was observed the greatest in hydrolysate treated with Aspergillus oryzae protease. The minimum inhibition concentrations of the Asp. oryzae protease hydrolysate were 1.0-1.5 mg/mL. This hydrolysate was a heat stable peptide since antimicrobial activity was maintained after treating with heat for 20 min at $121^{\circ}C$.

Antihypertensive, Antimicrobial and Antifungal Activities of Buckwheat Hydrolysate (메밀 가수분해물의 항고혈압, 항균 및 항곰팡이 활성)

  • Do, Jeong-Ryong;Heo, In-Sook;Back, Su-Yeon;Yoon, Hye-Sook;Jo, Jin-Ho;Kim, Young-Myoung;Kim, Ki-Ju;Kim, Sang-Kyo
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.268-272
    • /
    • 2006
  • Antibacterial, antifungal, and Angiotensin-I-converting enzyme (ACE) inhibitory activities of buckwheat (Fagopyrum esculentum and F. tataricum) hydrolyzed by Viscozyme L and Alcalase 2.4 L were investigated. The Alcalase 2.4L-hydrolyzed buckwheat showed highest yield of 22.10-24.65%. F. esculentum hydrolysate treated with Viscozyme L from Salmonella typhimurium (clear zone: 3-4.7 mm) and Listeria monocytogenes (clear zone: 4-7.2 mm) showed highest antimicrobial activity among enzymes used. F. esculentum hydrolysate treated with Trichoderma reesei showed strongest antifungal activity among enzymes used (clear zone: 3.7-12 mm). Alcalase 2.4L-hydrolyzed F. esculentum and F. tataricum showed strong ACE inhibitory activities (61.19% and 94.48%, respectively).

Comparison of the Hydrolysis Rate of Several Polyol Ester Oils as a Candidate for Environmentally Adapted Synthetic Base Oil (환경친화적인 합성기유 후보물질로서의 몇가지 폴리올에스터 오일의 가수분해속도 비교)

  • 한두희;마사부미마스꼬
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.162-177
    • /
    • 2001
  • The hydrolysis rates of seven kinds of polyol ester base oils 〔POEs〕 of different branch shape were investigated by using a simple apparatus under mild acidic condition. Seven polyol ester base oils were made of poly hydric alcohols of two-four valence, normal or branched fatty acids of different carbon number. p-Toluene sulfonic acid was used as acid catalyst to accelerate the rate of hydrolysis. Partial esters and fatty acid produced by sequential hydrolysis of POEs were identified and their concentrations were determined by calibrated-internal standard method using Gas Chromatography. The rate constants of each step in sequential hydrolysis were determined by the least square method from rate equation and the concentration of each component, were compared with one another. It was shown that the rate of hydrolysis of POEs was strongly affected by whether molecular structure of fatty acid was straight chain or branch chain and which position was branched. The hydrolysis stability for all the POEs can be reasonably explained by using a steric hindrance effect anticipated fi:om their molecular structures affecting as water molecule makes an attack on the carbonyl carbon of POEs.

  • PDF

Immunostimulatory effects of enzymatic porcine placental hydrolyzate against cyclophosphamide-induced immunosuppressed model (돈태반 효소 가수분해물의 cyclophosphamide에 의한 면역 저하 동물 모델에 미치는 면역 증진 효과)

  • Kim, Keun Nam;Kim, Min Ju;Yoon, Sun Myung;Kwon, Min Joo;Shin, Dong Yeop;Lee, Hak Yong;Park, Young Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.155-162
    • /
    • 2022
  • This study investigated the immunostimulatory effect of enzymatic porcine placental hydrolyzate (EPPH) in cyclophosphamide (Cy)-treated rats. This effect of EPPH prevented Cy-induced decreases in body, spleen, and thymus weights and natural killer (NK) cell activity. The numbers of immune cells, such as white blood cells, granulocytes, and lymphocytes, and mid-range absolute counts were significantly higher compared to the control group. The levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-2, IL-12, and immunoglobulin G (IgG) were notably reduced by Cy, while EPPH prevented these effects. Histopathological analysis of spleen samples revealed the protective effect of EPPH against Cy-induced immunosuppression. The findings demonstrate that EPPH can alleviate immunosuppression by cell viability, tissue damage, and regulation of the levels of cytokines. EPPH may have value as a component of immunostimulatory agents or an ingredient in functional foods.

Effects of Dietary Hydrolyzed Yeast on Egg Production and Egg Quality during Late Phase of Laying Hens (산란후기 사료 내 가수분해 효모의 첨가 급여가 생산성과 계란 품질에 미치는 영향)

  • Chung, Jae Young;Kim, Kwan Eung;Lee, Hyung Ho;Yang, Hoi Chang;Kim, Eun Jib;An, Byoung Ki
    • Korean Journal of Poultry Science
    • /
    • v.48 no.4
    • /
    • pp.169-176
    • /
    • 2021
  • An experiment was conducted to investigate the effects of varying levels of hydrolyzed yeast on egg production and egg quality in aged laying randomly allotted to three dietary treatments such that egg production was similar in each treatment (6 replicates of 10 birds each). The layers were fed diets containing 0, 0.1, or 0.2% hydrolyzed yeast for eight weeks. No significant difference was observed in egg production during the first half of the experiment. Egg production and daily egg mass in groups fed diets containing hydrolyzed yeast were significantly higher (P<0.05) than those of the control groups during the second half of the experiment. Egg weight was not affected by the dietary treatment. Eggshell strength and thickness in groups fed diets containing hydrolyzed yeast were significantly higher than those of the control groups during the overall experimental period (P<0.05). Although no significant differences were observed in the Haugh units, yolk color in the group fed diets containing 0.1% hydrolyzed yeast was significantly higher than that in the control group (P<0.05). The mammillary layer thickness increased in a linear manner and significantly following treatment with dietary hydrolyzed yeast (P<0.05). Antibody titer against avian influenza virus in the group fed diets containing 0.2% hydrolyzed yeast was significantly higher (P<0.05) than that in the control group. In conclusion, dietary hydrolyzed yeast improved egg production and eggshell quality of laying hens in the late stages of production.

Enzymatic preparation and antioxidant activities of protein hydrolysates derived from tuna byproducts (참치 가공부산물로부터 단백가수분해물 제조 및 항산화 활성 평가)

  • Gyu-Hyeon Park;Jeong-Min Lee;Na-Young Lim;Syng-Ook Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.885-895
    • /
    • 2023
  • This study aims to investigate the production and characteristics of protein hydrolysates derived from tuna byproducts (TP) using various proteolytic enzymes and to compare the antioxidant activity of the resulting hydrolysates. The TP were subjected to enzymatic hydrolysis using five different proteases: alcalase, bromelain, flavourzyme, neutrase, and papain, and the antioxidant activities of the hydrolysates were evaluated. Subsequent analysis of the available amino group contents and sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns indicated a high degree of hydrolysis in TP after treatment with all the enzymes, except for papain. Based on the RC50 values obtained from four different antioxidant analyses, all the hydrolysates exhibited similar antioxidant activity, except for the flavourzyme hydrolysate, which showed significantly higher scavenging activity against ABTS radicals and hydrogen peroxide than the other hydrolysates. These findings suggest that protein hydrolysates derived from TP hold promise as potential sources of natural antioxidants.