Antihypertensive, Antimicrobial and Antifungal Activities of Buckwheat Hydrolysate

메밀 가수분해물의 항고혈압, 항균 및 항곰팡이 활성

  • Published : 2006.04.01

Abstract

Antibacterial, antifungal, and Angiotensin-I-converting enzyme (ACE) inhibitory activities of buckwheat (Fagopyrum esculentum and F. tataricum) hydrolyzed by Viscozyme L and Alcalase 2.4 L were investigated. The Alcalase 2.4L-hydrolyzed buckwheat showed highest yield of 22.10-24.65%. F. esculentum hydrolysate treated with Viscozyme L from Salmonella typhimurium (clear zone: 3-4.7 mm) and Listeria monocytogenes (clear zone: 4-7.2 mm) showed highest antimicrobial activity among enzymes used. F. esculentum hydrolysate treated with Trichoderma reesei showed strongest antifungal activity among enzymes used (clear zone: 3.7-12 mm). Alcalase 2.4L-hydrolyzed F. esculentum and F. tataricum showed strong ACE inhibitory activities (61.19% and 94.48%, respectively).

본 연구에서는 단메밀과 쓴메밀에 Viscozyme L과 Alcalase 2.4L 효소를 첨가하여 가수분해물을 제조하고, 이들의 항균, 항곰팡이, 항고혈압 활성을 조사하였다. 그 결과 효소를 첨가하지 않은 단메밀과 쓴메밀의 수율은 각각 7.92, 3.17%로 낮은 가수분해율을 보었으며 Viscozyme L을 첨가한 단메밀과 쓴메밀의 경우 18.70, 19.45% 그리고 Alcalase 2.4L을 첨가한 단메밀과 쓴메밀의 경우 24.65, 22.10%로 가장 높은 수율을 보였다. 메밀 가수분해물을 E. coli, S. typhimurium, P. aeruginosa, B. subtilis, S. aureus 및 L. monocytogences 균주에 대해 항균 활성을 조사한 결과, Viscozyme L을 첨가한 단메밀 가수분해물이 L. monocytogences, S. typhimurium에 대해 3-7.2 mm의 clear zone으로 항균 활성을 나타내었으며 쓴메밀 가수분해물이 S. typhimurium에 대해 5.7 mm의 clear zone으로 낮은 항균 활성을 나타내었다. A. niger, M. miehei, P. rugullosum, A. oryzae, T. reesei 균주의 항곰팡이 활성은 Viscozyme L을 첨가한 단메밀 가수분해물이 T. reesei에 대해 3.7-12 mm의 clear zone으로 강한 활성을 나타내었다. ACE 저해 활성은 효소를 첨가하지 않은 단메밀은 45.82%, 쓴메밀은 73.06%으로 나타났다. Viscozyme L을 첨가한 가수분해물의 경우 단메밀은 39.39%, 쓴메밀은 46.83%로 효소를 첨가하지 않은 메밀 가수분해물에 비해 낮은 ACE 저해활성을 보였다. 반면 Alcalase 2.4 L을 첨가한 가수분해물의 경우 단메밀 61.19%, 쓴메밀 94.48%로 가장 높은 ACE 저해활성을 나타내었다.

Keywords

References

  1. Mazza G. Lipid content and fatty acid composition of buckwheat seed. Cereal Chem. 65: 122-126 (1988)
  2. Dorrell D. Fatty acid composition of buckwheat seed. J. Assoc. Oil. Chem. Soc. 48: 693-696 (1971) https://doi.org/10.1007/BF02638522
  3. Mazza G. Buckwheat browning and color assessment. Cereal Chem. 63: 361-364 (1986)
  4. Choe M, Kim JD, Park KS, Oh SY, Lee SY Effect of buckwheat supplementation on blood glucose levels and blood pressure in rats. J. Korean Soc. Food Nutr. 20: 300-305 (1991)
  5. Lee MS, Sohn KH. A study on the physicochemical properties of buckwheat starches. Korean J. Soc. Food Sci. 8: 291-296 (1992)
  6. Ikeda K, Kusano T. Isolation and some properties of a trypsin inhibitor from buckwheat again. Agric. Biol. Chem. 4: 309-314 (1978)
  7. Ikeda K, Kusano T. Purification and properties of the trypsin inhibitors from buckwheat seed. Agric. Biol. Chem. 47: 481-487 (1983)
  8. Ikeda K, Arioka K. Fuji S, Kusano T, Oku M. Effect on buckwheat protein quality of seed germination and changds in trypsin inhibitor content. Cereal Chem. 61: 236-238 (1984)
  9. Maeng YS, Park HK, Kwon TB. Analysis of rutin contents in buckwheat and buckwheat foods. Korean J. Food Sci. Technol. 22: 732-737 (1990)
  10. Maeng YS, Park HK, Kwon TB. Analysis of rutin contents in buckwheat and buckwheat foods. Korean J. Food Sci. Technol. 22: 732-737 (1990)
  11. Kwon TB. Changes in rutin and fatty acids of buckwheat during germination. Korean J. Food Nutr. 7: 124-127 (1994)
  12. Lee MH, Woo SJ, Oh SK, Kwon TB. Changes in contents and composition of dietary fiber during buckwheat germination. Korean J. Food Nutr. 7: 274-283 (1994)
  13. Choi YS, Sur JH, Kim CH, Kim YM. Ham SS, Lee SY. Effects of dietary buckwheat vegatables on liipid metabolism in rats. J. Korean Soc. Food Nutr. 23: 212-218 (1994)
  14. Ikeda H, Najae T, Hara Y, Shimamura T. Bactericidal catechins damage the lipid bilayer. Biochim. Biophys. Acta. 1147: 132-136 (1993) https://doi.org/10.1016/0005-2736(93)90323-R
  15. Huang Y, Zhang A, Lau CW, Chen ZY. Vasorelaxant effects of purified green tea epicatechin derivatives in rat mesenteric artery. Life Sci. 63: 257-283 (1998)
  16. Do JR, Kim KJ, Jo JH, Kim YM, Kim BS, Kim HK, Lim SD, Lee SW. Antimicrobial, antihypertensive and anticancer activities of medicinal herbs. Korean J. Food Sci. Technol. 37: 206-213 (2005)
  17. Suzuki T, Ishikawa N, Meguro H. Angiotensin-l-converting enzyme inhibitory activity in foods. Nippon Nogeiogaku Kaishi 57: 1143-1146 (1983) https://doi.org/10.1271/nogeikagaku1924.57.1143
  18. AOAC. Official Methods of Analysis of AOAC. Intl. 15th ed. Association of Official Analytical Chemists. Arlington, VA, USA (1990)
  19. Cushman DW, Cheung HS. Spectrophotometric asaay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637-1648 (1971) https://doi.org/10.1016/0006-2952(71)90292-9
  20. Wang Q, Oura T, Wang L. Research and development of new products from bitter-buckwheat. Current Advances in Buckwheat Research. pp. 873-879 (1995)
  21. Lee JS, Shin HK. Correlation between glycemic index and in vitro starch hydrolysis of cereals. Korean J. Food Sci. Technol. 30: 1229-1235 (1998)
  22. Frazier WA, Bartles JR. Discoidin l-membrane interactions I binds to two types of receptor on fixed Dictyostelium discoideum cells. Biochim. Biophys. Acta. 687: 121-128 (1982) https://doi.org/10.1016/0005-2736(82)90537-5
  23. Maruyama S, Miyoshi S, Tanaka H. Angiotensin-I-converting enzyme inhibitors derived from ficus carica. Agric. Biol. Chem. 53: 2763-2767 (1989) https://doi.org/10.1271/bbb1961.53.2763
  24. Kim TJ, Yoon HD, Lee DS, Jang YS, Suh SB, Yeum DM. Angiotensin-l-converting enzyme inhibitory activity of hot-water extract and enzymatic hydrolysate of freash water fish. J. Korean Soc. Food Nutr. 25: 871-877 (1996)